Design and Synthesis of Glycosylated Cholera Toxin B Subunit as a Tracer of Glycoprotein Trafficking in Organelles of Living Cells
Dr. Yuta Maki
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorKazuki Kawata
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorDr. Yanbo Liu
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorKang-Ying Goo
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorDr. Ryo Okamoto
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yasuhiro Kajihara
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorCorresponding Author
Dr. Ayano Satoh
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530 Japan
Search for more papers by this authorDr. Yuta Maki
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorKazuki Kawata
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorDr. Yanbo Liu
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorKang-Ying Goo
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorDr. Ryo Okamoto
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yasuhiro Kajihara
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Project Research Center for Fundamental Sciences, Graduate Scholl of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043 Japan
Search for more papers by this authorCorresponding Author
Dr. Ayano Satoh
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530 Japan
Search for more papers by this authorGraphical Abstract
We designed and chemically synthesized intentionally glycosylated cholera toxin B-subunit (glycosyl-CTB) as a tracer to investigate maturation and functions of N-glycans on the biosynthesis of glycoproteins. The obtained glycoprotein was successfully transported to the endoplasmic reticulum (ER) and the Golgi apparatus of living cells.
Abstract
Glycosylation of proteins is known to be essential for changing biological activity and stability of glycoproteins on the cell surfaces and in body fluids. Delivering of homogeneous glycoproteins into the endoplasmic reticulum (ER) and the Golgi apparatus would enable us to investigate the function of asparagine-linked (N-) glycans in the organelles. In this work, we designed and synthesized an intentionally glycosylated cholera toxin B-subunit (CTB) to be transported to the organelles of mammalian cells. The heptasaccharide, the intermediate structure of various complex-type N-glycans, was introduced to the CTB. The synthesized monomeric glycosyl-CTB successfully entered mammalian cells and was transported to the Golgi and the ER, suggesting the potential use of synthetic CTB to deliver and investigate the functions of homogeneous N-glycans in specific organelles of living cells.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202201253-sup-0001-misc_information.pdf16.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Helenius, Aebi, Markus, Science 2001, 291, 2364–2369;
- 1bP. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson, R. A. Dwek, Science 2001, 291, 2370–2376.
- 2Essentials of Glycobiology (Eds: Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., Etzler, M. E.); Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2009.
- 3
- 3aS. Thiemann, L. G. Baum, Annu. Rev. Immunol. 2016, 34, 243–264;
- 3bT. Shinkawa, K. Nakamura, N. Yamane, E. Shoji-Hosaka, Y. Kanda, M. Sakurada, K. Uchida, H. Anazawa, M. Satoh, M. Yamasaki, N. Hanai, K. Shitara, J. Biol. Chem. 2003, 278, 3466–3473;
- 3cF.-T. Liu, G. A. Rabinovich, Nat. Rev. Cancer 2005, 5, 29–41.
- 4H. Rahbek-Nielsen, P. Roepstorff, H. Reischl, M. Wozny, H. Koll, A. Haselbeck, J. Mass Spectrom. 1997, 32, 948–958.
10.1002/(SICI)1096-9888(199709)32:9<948::AID-JMS551>3.0.CO;2-C CASPubMedWeb of Science®Google Scholar
- 5Y. Kagawa, S. Takasaki, J. Utsumi, K. Hosoi, H. Shimizu, N. Kochibe, A. Kobata, J. Biol. Chem. 1988, 263, 17508–17515.
- 6Y. Maki, R. Okamoto, M. Izumi, Y. Kajihara, J. Am. Chem. Soc. 2020, 142, 20671–20679.
- 7T. Kiuchi, M. Izumi, Y. Mukogawa, A. Shimada, R. Okamoto, A. Seko, M. Sakono, Y. Takeda, Y. Ito, Y. Kajihara, J. Am. Chem. Soc. 2018, 140, 17499–17507.
- 8N. L. B. Wernick, D. J.-F. Chinnapen, J. A. Cho, W. I. Lencer, Toxin Rev. 2010, 2, 310–325.
- 9
- 9aP. Cuatrecasas, Biochemistry 1973, 12, 3547–3558;
- 9bG. M. Kuziemko, M. Stroh, R. C. Stevens, Biochemistry 1996, 35, 6375–6384;
- 9cC. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, N. M. Young, J. Biol. Chem. 1997, 272, 5533–5538;
- 9dR. M. Dawson, J. Appl. Toxicol. 2005, 25, 30–38.
- 10D. J.-F. Chinnapen, H. Chinnapen, D. Saslowsky, W. I. Lencer, FEMS Microbiol. Lett. 2007, 266, 129–137.
- 11W. I. Lencer, C. Constable, S. Moe, M. G. Jobling, H. M. Webb, S. Ruston, J. L. Madara, T. R. Hirst, R. K. Holmes, J. Cell Biol. 1995, 131, 951–962.
- 12
- 12aK. Oh-hashi, E. Furuta, K. Fujimura, Y. Hirata, Biochem. Biophys. Rep. 2017, 12, 40–45;
- 12bM. K. Schwinn, T. Machleidt, K. Zimmerman, C. T. Eggers, A. S. Dixon, R. Hurst, M. P. Hall, L. P. Encell, B. F. Binkowski, K. V. Wood, ACS Chem. Biol. 2018, 13, 467–474.
- 13A. S. Dixon, M. K. Schwinn, M. P. Hall, K. Zimmerman, P. Otto, T. H. Lubben, B. L. Butler, B. F. Binkowski, T. Machleidt, T. A. Kirkland, M. G. Wood, C. T. Eggers, L. P. Encell, K. V. Wood, ACS Chem. Biol. 2016, 11, 400–408.
- 14D. D. Mitchell, J. C. Pickens, K. Korotkov, E. Fan, W. G. J. Hol, Bioorg. Med. Chem. 2004, 12, 907–920.
- 15
- 15aM. Murakami, R. Okamoto, M. Izumi, Y. Kajihara, Angew. Chem. Int. Ed. 2012, 51, 3567–3572;
Angew. Chem. 2012, 124, 3627–3632;
10.1002/ange.201109034 Google Scholar
- 15bM. Izumi, M. Murakami, R. Okamoto, Y. Kajihara, J. Pep. Sci. 2014, 20, 98–101.
- 16Y. Kajihara, Y. Suzuki, N. Yamamoto, K. Sasaki, T. Sakakibara, L. R. Juneja, Chem. Eur. J. 2004, 10, 971–985.
- 17P. Dawson, T. Muir, I. Clark-Lewis, S. Kent, Science 1994, 266, 776–779.
- 18
- 18aS. K. Chowdhury, V. Katta, B. T. Chait, J. Am. Chem. Soc. 1990, 112, 9012–9013;
- 18bJ. A. Loo, R. R. O. Loo, H. R. Udseth, C. G. Edmonds, R. D. Smith, Rapid Commun. Mass Spectrom. 1991, 5, 101–105;
- 18cI. A. Kaltashov, S. J. Eyles, Mass Spectrom. Rev. 2002, 21, 37–71.
- 19
- 19aN. Matoba, H. Kajiura, I. Cherni, J. D. Doran, M. Bomsel, K. Fujiyama, T. S. Mor, Plant Biotechnol. J. 2009, 7, 129–145;
- 19bK. T. Hamorsky, J. C. Kouokam, L. J. Bennett, K. J. Baldauf, H. Kajiura, K. Fujiyama, N. Matoba, PLoS Neglected Trop. Dis. 2013, 7, e2046;
- 19cK. T. Hamorsky, J. C. Kouokam, J. M. Jurkiewicz, B. Nelson, L. J. Moore, A. S. Husk, H. Kajiura, K. Fujiyama, N. Matoba, Sci. Rep. 2015, 5, 8003.
- 20Y. Tamaki, T. Harakuni, R. Yamaguchi, T. Miyata, T. Arakawa, Vaccine 2016, 34, 1268–1274.
- 21
- 21aX. Wang, A. S. Ashhurst, L. J. Dowman, E. E. Watson, H. Y. Li, A. J. Fairbanks, M. Larance, A. Kwan, R. J. Payne, Org. Lett. 2020, 22, 6863–6867;
- 21bH. Li, J. Zhang, C. An, S. Dong, J. Am. Chem. Soc. 2021, 143, 2846–2856.
- 22
- 22aA. Shiber, K. Döring, U. Friedrich, K. Klann, D. Merker, M. Zedan, F. Tippmann, G. Kramer, B. Bukau, Nature 2018, 561, 268–272;
- 22bM. Bertolini, K. Fenzl, I. Kats, F. Wruck, F. Tippmann, J. Schmitt, J. J. Auburger, S. Tans, B. Bukau, G. Kramer, Science 2021, 371, 57–64.
- 23J. M. Royal, Y. J. Oh, M. J. Grey, W. I. Lencer, N. Ronquillo, S. Galandiuk, N. Matoba, FASEB J. 2019, 33, 13527–13545.
- 24
- 24aY. Fujinaga, A. A. Wolf, C. Rodighiero, H. Wheeler, B. Tsai, L. Allen, M. G. Jobling, T. Rapoport, R. K. Holmes, W. I. Lencer, Mol. Biol. Cell 2003, 14, 4783–4793;
- 24bY. Feng, A. P. Jadhav, C. Rodighiero, Y. Fujinaga, T. Kirchhausen, W. I. Lencer, EMBO Rep. 2004, 5, 596–601.
- 25
- 25aA. Girod, B. Storrie, J. C. Simpson, L. Johannes, B. Goud, L. M. Roberts, J. M. Lord, T. Nilsson, R. Pepperkok, Nat. Cell Biol. 1999, 1, 423–430;
- 25bJ. White, L. Johannes, F. Mallard, A. Girod, S. Grill, S. Reinsch, P. Keller, B. Tzschaschel, A. Echard, B. Goud, E. H. K. Stelzer, J. Cell Biol. 1999, 147, 743–760.