Skeletal Editing of (Hetero)Arenes Using Carbenes
Dr. Zhaohong Liu
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorDr. Paramasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorDr. Yongquan Ning
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorDr. Yong Wu
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorCorresponding Author
Prof. Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Zhaohong Liu
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorDr. Paramasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorDr. Yongquan Ning
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorDr. Yong Wu
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this manuscript.
Search for more papers by this authorCorresponding Author
Prof. Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorGraphical Abstract
This review summarizes the state-of-the-art developments in the skeletal editing of (hetero)arenes using carbenes, with an emphasis on the scope, reactivity, selectivity, and general mechanistic considerations. The impressive breadth of application of this strategy in both drug discovery and total synthesis is also discussed. Existing challenges and perspectives on future research directions to further understanding and new reaction developments are outlined.
Abstract
(Hetero)arenes continue to prove their indispensability in pharmaceuticals, materials science, and synthetic chemistry. As such, the controllable modification of biologically significant (hetero)arenes towards diverse more-potent complex molecular scaffolds through peripheral and skeletal editing has been considered a challenging goal in synthetic organic chemistry. Despite many excellent reviews on peripheral editing (i. e., C−H functionalization) of (hetero)arenes, their skeletal editings via single atom insertion, deletion, or transmutations have received less attention in the review literature. In this review, we systematically summarize the state-of-the-art skeletal editing reactions of (hetero)arenes using carbenes, with a focus on general mechanistic considerations and their applications in natural product syntheses. The potential opportunities and inherent challenges encountered while developing these strategies are also highlighted.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1K. R. Campos, P. J. Coleman, J. C. Alvarez, S. D. Dreher, R. M. Garbaccio, N. K. Terrett, R. D. Tillyer, M. D. Truppo, E. R. Parmee, Science 2019, 363, eaat0805.
- 2D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas, D. M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383–394.
- 3C. Hui, Z. Wang, S. Wang, C. Xu, Org. Chem. Front. 2022, 9, 1451–1457.
- 4A. M. Szpilman, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 9592–9628.
- 5L. Zhang, T. Ritter, J. Am. Chem. Soc. 2022, 144, 2399–2414.
- 6L. Guillemard, N. Kaplaneris, L. Ackermann, M. J. Johansson, Nat. Chem. Rev. 2021, 5, 522–545.
- 7D. J. Abrams, P. A. Provencher, E. J. Sorensen, Chem. Soc. Rev. 2018, 47, 8925–8967.
- 8T. Dalton, T. Faber, F. Glorius, ACS Cent. Sci. 2021, 7, 245–261.
- 9T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546–576.
- 10J. F. Hartwig, J. Am. Chem. Soc. 2016, 138, 2–24.
- 11B. Hong, T. Luo, X. Lei, ACS Cent. Sci. 2020, 6, 622–635.
- 12B. Prabagar, Y. Yang, Z. Shi, Chem. Soc. Rev. 2021, 50, 11249–11269.
- 13B. Zhao, B. Prabagar, Z. Shi, Chem 2021, 7, 2585–2634.
- 14J. Jurczyk, J. Woo, S. F. Kim, B. D. Dherange, R. Sarpong, M. D. Levin, Nat. Synth. 2022, 1, 352–364.
- 15B. W. Joynson, L. T. Ball, Helv. Chim. Acta 2023, 106, e202200182.
- 16Y. Hu, D. Stumpfe, J. Bajorath, J. Med. Chem. 2017, 60, 1238–1246.
- 17F. Liu, L. Anand, M. Szostak, Chem. A Eur. J. 2023, 29, e202300096.
- 18M. E. Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin. Chem. Biol. 2010, 14, 347–361.
- 19R. DeSimone, K. Currie, S. Mitchell, J. Darrow, D. Pippin, Comb. Chem. High Throughput Screening 2004, 7, 473–493.
- 20R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57, 5845–5859.
- 21D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev. 2003, 103, 893–930.
- 22L. D. Pennington, D. T. Moustakas, J. Med. Chem. 2017, 60, 3552–3579.
- 23E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257–10274.
- 24A. Sattler, G. Parkin, Nature 2010, 463, 523–526.
- 25L. F. Silva, in Stereoselective Synth. Drugs Nat. Prod., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2013, pp. 1–20.
- 26N. R. Candeias, R. Paterna, P. M. P. Gois, Chem. Rev. 2016, 116, 2937–2981.
- 27E. Leemans, M. D'hooghe, N. De Kimpe, Chem. Rev. 2011, 111, 3268–3333.
- 28J. R. Donald, W. P. Unsworth, Chem. A Eur. J. 2017, 23, 8780–8799.
- 29B. D. Dherange, P. Q. Kelly, J. P. Liles, M. S. Sigman, M. D. Levin, J. Am. Chem. Soc. 2021, 143, 11337–11344.
- 30E. E. Hyland, P. Q. Kelly, A. M. McKillop, B. D. Dherange, M. D. Levin, J. Am. Chem. Soc. 2022, 144, 19258–19264.
- 31V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, P. Sharma, RSC Adv. 2015, 5, 15233–15266.
- 32N. Jeelan Basha, S. M. Basavarajaiah, K. Shyamsunder, Mol. Diversity 2022, 26, 2915–2937.
- 33G. L. Ciamician, M. Dennstedt, Ber. Dtsch. Chem. Ges. 1881, 14, 1153–1163.
- 34H. Wynberg, Chem. Rev. 1960, 60, 169–184.
- 35D. Ma, B. S. Martin, K. S. Gallagher, T. Saito, M. Dai, J. Am. Chem. Soc. 2021, 143, 16383–16387.
- 36H. M. L. Davies, W. B. Young, H. D. Smith, Tetrahedron Lett. 1989, 30, 4653–4656.
- 37H. M. L. Davies, E. Saikali, W. B. Young, J. Org. Chem. 1991, 56, 5696–5700.
- 38H. M. L. Davies, N. J. S. Huby, Tetrahedron Lett. 1992, 33, 6935–6938.
- 39H. M. L. Davies, E. Saikali, N. J. S. Huby, V. J. Gilliatt, J. J. Matasi, T. Sexton, S. R. Childers, J. Med. Chem. 1994, 37, 1262–1268.
- 40B. A. Bennett, C. H. Wichems, C. K. Hollingsworth, H. M. Davies, C. Thornley, T. Sexton, S. R. Childers, J. Pharmacol. Exp. Ther. 1995, 272, 1176–86.
- 41H. M. L. Davies, J. J. Matasi, C. Thornley, Tetrahedron Lett. 1995, 36, 7205–7208.
- 42H. M. L. Davies, J. J. Matasi, G. Ahmed, J. Org. Chem. 1996, 61, 2305–2313.
- 43H. M. L. Davies, J. J. Matasi, Tetrahedron Lett. 1994, 35, 5209–5212.
- 44C. W. Rees, C. E. Smithen, J. Chem. Soc. 1964, 928.
- 45W. E. Parham, R. W. Davenport, J. B. Biasotti, Tetrahedron Lett. 1969, 10, 557–560.
- 46H. Rudler, T. Durand-Réville, J. Organomet. Chem. 2001, 617–618, 571–587.
- 47S. Liu, Y. Yang, Q. Song, Z. Liu, Y. Lu, Z. Wang, P. Sivaguru, X. Bi, Research Square 2023, https://doi.org/10.21203/rs.3.rs-2466531/v1.
- 48J. S. Yadav, B. V. S. Reddy, M. K. Gupta, A. Prabhakar, B. Jagadeesh, Chem. Commun. 2004, 2124.
- 49M. Morita, Y. Hari, T. Aoyama, Synthesis 2010, 2010, 4221–4227.
- 50J. Kim, E. J. Yoo, Org. Lett. 2021, 23, 4256–4260.
- 51A. Lablache-Combier, G. Surpateanu, Tetrahedron Lett. 1976, 17, 3081–3082.
- 52S. Stockerl, T. Danelzik, D. G. Piekarski, O. García Mancheño, Org. Lett. 2019, 21, 4535–4539.
- 53A. C. Lindsay, S. H. Kim, J. Sperry, Nat. Prod. Rep. 2018, 35, 1347–1382.
- 54M. Chen, Y. Chen, N. Sun, J. Zhao, Y. Liu, Y. Li, Angew. Chem. Int. Ed. 2015, 54, 1200–1204.
- 55H. Hu, X. Hu, M. Chen, N. Sun, Y. Liu, Chin. J. Org. Chem. 2018, 38, 190.
- 56B. Niu, Q. Nie, B. Huang, M. Cai, Adv. Synth. Catal. 2019, 361, 4065–4074.
- 57M. J. Mailloux, G. S. Fleming, S. S. Kumta, A. B. Beeler, Org. Lett. 2021, 23, 525–529.
- 58W. D. Crow, I. Gosney, R. A. Ormiston, J. Chem. Soc. Chem. Commun. 1983, 643–644.
- 59J. R. Manning, H. M. L. Davies, Tetrahedron 2008, 64, 6901–6908.
- 60J. R. Manning, H. M. L. Davies, J. Am. Chem. Soc. 2008, 130, 8602–8603.
- 61A. F. Khlebnikov, M. S. Novikov, Y. G. Gorbunova, E. E. Galenko, K. I. Mikhailov, V. V Pakalnis, M. S. Avdontceva, Beilstein J. Org. Chem. 2014, 10, 1896–1905.
- 62I. D. Jurberg, H. M. L. Davies, Org. Lett. 2017, 19, 5158–5161.
- 63N. V. Rostovskii, J. O. Ruvinskaya, M. S. Novikov, A. F. Khlebnikov, I. A. Smetanin, A. V. Agafonova, J. Org. Chem. 2017, 82, 256–268.
- 64M. Qi, M. Suleman, J. Fan, P. Lu, Y. Wang, Tetrahedron 2022, 128, 133092.
- 65P. D. Jadhav, X. Lu, R.-S. Liu, ACS Catal. 2018, 8, 9697–9701.
- 66W. Xu, J. Zhao, X. Li, Y. Liu, J. Org. Chem. 2018, 83, 15470–15485.
- 67R. Vanjari, S. Dutta, B. Prabagar, V. Gandon, A. K. Sahoo, Chem. Asian J. 2019, 14, 4828–4836.
- 68C. Han, W. Wu, Z. Chen, S. Pu, Asian J. Org. Chem. 2019, 8, 1385–1389.
- 69R. L. Jones, C. W. Rees, J. Chem. Soc. C Org. 1969, 2251.
- 70A. N. Koronatov, N. V. Rostovskii, A. F. Khlebnikov, M. S. Novikov, J. Org. Chem. 2018, 83, 9210–9219.
- 71E. Buchner, T. Curtius, Ber. Dtsch. Chem. Ges. 1885, 18, 2371–2377.
- 72E. Buchner, Ber. Dtsch. Chem. Ges. 1896, 29, 106–109.
- 73T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091–1160.
- 74S. Reisman, R. Nani, S. Levin, Synlett 2011, 2011, 2437–2442.
- 75A. J. Anciaux, A. Demonceau, A. J. Hubert, A. F. Noels, N. Petiniot, P. Teyssié, J. Chem. Soc. Chem. Commun. 1980, 765–766.
- 76A. J. Anciaux, A. Demonceau, A. F. Noels, A. J. Hubert, R. Warin, P. Teyssie, J. Org. Chem. 1981, 46, 873–876.
- 77M. A. McKervey, D. N. Russell, M. F. Twohig, J. Chem. Soc. Chem. Commun. 1985, 491–492.
- 78J. C. Collins, B. M. Dilworth, N. T. Garvey, M. Kennedy, M. A. McKervey, M. B. O'Sullivan, J. Chem. Soc. Chem. Commun. 1990, 362–364.
- 79H. M. L. Davies, H. D. Smith, B. Hu, S. M. Klenzak, F. J. Hegner, J. Org. Chem. 1992, 57, 6900–6903.
- 80D. L. Dalrymple, S. P. B. Taylor, J. Am. Chem. Soc. 1971, 93, 7098–7098.
- 81R. Huisgen, G. Juppe, Tetrahedron 1961, 15, 7–17.
- 82R. Huisgen, G. Juppe, Chem. Ber. 1961, 94, 2332–2349.
- 83M. Pomerantz, M. Levanon, Tetrahedron Lett. 1991, 32, 995–998.
- 84M. Yang, T. R. Webb, P. Livant, J. Org. Chem. 2001, 66, 4945–4949.
- 85E. Wyatt, W. Galloway, D. Spring, Synlett 2011, 2011, 1449–1453.
- 86G. S. Fleming, A. B. Beeler, Org. Lett. 2017, 19, 5268–5271.
- 87M. E. Morilla, M. M. Díaz-Requejo, T. R. Belderrain, M. C. Nicasio, S. Trofimenko, P. J. Pérez, Organometallics 2004, 23, 293–295.
- 88C. J. Lovely, R. G. Browning, V. Badarinarayana, H. V. R. Dias, Tetrahedron Lett. 2005, 46, 2453–2455.
- 89N. Komine, J. A. Flores, K. Pal, K. G. Caulton, D. J. Mindiola, Organometallics 2013, 32, 3185–3191.
- 90M. R. Fructos, T. R. Belderrain, P. De Frémont, N. M. Scott, S. P. Nolan, M. M. Díaz-Requejo, P. J. Pérez, Angew. Chem. Int. Ed. 2005, 44, 5284–5288.
- 91M. R. Fructos, M. Besora, A. A. C. Braga, M. M. Díaz-Requejo, F. Maseras, P. J. Pérez, Organometallics 2017, 36, 172–179.
- 92H. M. Mbuvi, L. K. Woo, J. Porphyrins Phthalocyanines 2009, 13, 136–152.
- 93T. Suzuki, Q. Li, K. C. Khemani, F. Wudl, Ö. Almarsson, Science 1991, 254, 1186–1188.
- 94L. Isaacs, A. Wehrsig, F. Diederich, Helv. Chim. Acta 1993, 76, 1231–1250.
- 95H. J. Bestmann, C. Moll, C. Bingel, Synlett 1996, 1996, 729–730.
- 96Y. Nakamura, K. Inamura, R. Oomuro, R. Laurenco, T. T. Tidwell, J. Nishimura, Org. Biomol. Chem. 2005, 3, 3032.
- 97H. Kitamura, K. Kokubo, T. Oshima, Org. Lett. 2007, 9, 4045–4048.
- 98Y. Kabe, H. Hachiya, T. Saito, D. Shimizu, M. Ishiwata, K. Suzuki, Y. Yakushigawa, W. Ando, J. Organomet. Chem. 2009, 694, 1988–1997.
- 99G. Lin, R. Cui, H. Huang, X. Guo, S. Yang, C. Li, J. Dong, B. Sun, Tetrahedron 2015, 71, 7998–8002.
- 100L. T. Scott, J. Chem. Soc. Chem. Commun. 1973, 882.
- 101H. Duddeck, M. Kennedy, M. A. McKervey, F. M. Twohig, J. Chem. Soc. Chem. Commun. 1988, 1586.
- 102M. Kennedy, M. A. McKervey, A. R. Maguire, S. M. Tuladhar, M. F. Twohig, J. Chem. Soc. Perkin Trans. 1 1990, 1047.
- 103H. Duddeck, G. Ferguson, B. Kaitner, M. Kennedy, M. A. McKervey, A. R. Maguire, J. Chem. Soc. Perkin Trans. 1 1990, 1055.
- 104P. Kumar, A. T. Rao, K. Saravanan, B. Pandey, Tetrahedron Lett. 1995, 36, 3397–3400.
- 105J. L. Kane, K. M. Shea, A. L. Crombie, R. L. Danheiser, Org. Lett. 2001, 3, 1081–1084.
- 106A. L. Crombie, J. L. Kane, K. M. Shea, R. L. Danheiser, J. Org. Chem. 2004, 69, 8652–8667.
- 107A. K. Clarke, W. P. Unsworth, R. J. K. Taylor, Tetrahedron 2018, 74, 5374–5382.
- 108C. Iwata, M. Yamada, Y. Shinoo, K. Kobayashi, H. Okada, Chem. Pharm. Bull. 1980, 28, 1932–1934.
- 109D. C. Crowley, D. Lynch, A. R. Maguire, J. Org. Chem. 2018, 83, 3794–3805.
- 110T. Hoshi, E. Ota, Y. Inokuma, J. Yamaguchi, Org. Lett. 2019, 21, 10081–10084.
- 111Q. Zeng, K. Dong, C. Pei, S. Dong, W. Hu, L. Qiu, X. Xu, ACS Catal. 2019, 9, 10773–10779.
- 112C. J. Moody, S. Miah, A. M. Z. Slawin, D. J. Mansfield, I. C. Richards, J. Chem. Soc. Perkin Trans. 1 1998, 4067–4076.
- 113M. Grohmann, S. Buck, L. Schäffler, G. Maas, Adv. Synth. Catal. 2006, 348, 2203–2211.
- 114S. Mo, J. Xu, ChemCatChem 2014, 6, 1679–1683.
- 115X. Xu, Y. Deng, D. N. Yim, P. Y. Zavalij, M. P. Doyle, Chem. Sci. 2015, 6, 2196–2201.
- 116N. Phan Thi Thanh, M. Tone, H. Inoue, I. Fujisawa, S. Iwasa, Chem. Commun. 2019, 55, 13398–13401.
- 117B. Darses, P. Maldivi, C. Philouze, P. Dauban, J.-F. Poisson, Org. Lett. 2021, 23, 300–304.
- 118S. Mo, X. Li, J. Xu, J. Org. Chem. 2014, 79, 9186–9195.
- 119J. Ma, K. Chen, H. Fu, L. Zhang, W. Wu, H. Jiang, S. Zhu, Org. Lett. 2016, 18, 1322–1325.
- 120J. Liu, J. Tu, Z. Yang, C.-U. Pak, J. Xu, Tetrahedron 2017, 73, 4616–4626.
- 121H. Wang, C.-Y. Zhou, C.-M. Che, Adv. Synth. Catal. 2017, 359, 2253–2258.
- 122K. Ji, L. Zhang, Adv. Synth. Catal. 2018, 360, 647–651.
- 123F. Sánchez-Cantalejo, J. D. Priest, P. W. Davies, Chem. Eur. J. 2018, 24, 17215–17219.
- 124T. Ito, S. Harada, H. Homma, H. Takenaka, S. Hirose, T. Nemoto, J. Am. Chem. Soc. 2021, 143, 604–611.
- 125M. Kennedy, M. A. McKervey, J. Chem. Soc. Perkin Trans. 1 1991, 2565–2574.
- 126G. R. King, L. N. Mander, N. J. T. Monck, J. C. Morris, H. Zhang, J. Am. Chem. Soc. 1997, 119, 3828–3829.
- 127B. Frey, A. P. Wells, D. H. Rogers, L. N. Mander, J. Am. Chem. Soc. 1998, 120, 1914–1915.
- 128Y. Cui, Z. Jiao, J. Gong, Q. Yu, X. Zheng, J. Quan, M. Luo, Z. Yang, Org. Lett. 2010, 12, 4–7.
- 129S. Levin, R. R. Nani, S. E. Reisman, J. Am. Chem. Soc. 2011, 133, 774–776.