Classical Gold Carbonyl Complexes in Tetrahedral and Trigonal-Planar Settings
Dr. Mukundam Vanga
Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019 United States
Search for more papers by this authorCorresponding Author
Prof. Dr. Alvaro Muñoz-Castro
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524 Chile
Search for more papers by this authorCorresponding Author
Prof. Dr. H. V. Rasika Dias
Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019 United States
Search for more papers by this authorDr. Mukundam Vanga
Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019 United States
Search for more papers by this authorCorresponding Author
Prof. Dr. Alvaro Muñoz-Castro
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524 Chile
Search for more papers by this authorCorresponding Author
Prof. Dr. H. V. Rasika Dias
Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019 United States
Search for more papers by this authorGraphical Abstract
Abstract
A unique four-coordinate, classical gold(I)-carbonyl complex with substantial backdonation from gold has been isolated by using a B-methylated and fluorinated tris(pyridyl)borate chelator. Its lighter silver(I) and copper(I) analogs enabled a study of trends in the coinage-metal family. The B-arylated ligand version also afforded a gold–carbon monoxide complex that displays a notably low C−O stretch value, but with trigonal planar geometry at the gold. A computational analysis shows that the AuI−CO bonds of these tris(pyridyl)borate ligand-supported molecules consist of electrostatic attraction, OC→Au σ-donation, and very significant Au→CO π-back-bonding components. The latter is responsible for the observed C−O stretching frequencies, which are lower than in free CO.
Conflict of interest
There are no conflicts to declare.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202303339-sup-0001-misc_information.pdf3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Manchot, H. Gall, Ber. Dtsch. Chem. Ges. B 1925, 58, 2175–2178.
10.1002/cber.19250580941 Google Scholar
- 2G. Bistoni, S. Rampino, N. Scafuri, G. Ciancaleoni, D. Zuccaccia, L. Belpassi, F. Tarantelli, Chem. Sci. 2016, 7, 1174–1184.
- 3M. A. Celik, C. Dash, V. A. K. Adiraju, A. Das, M. Yousufuddin, G. Frenking, H. V. R. Dias, Inorg. Chem. 2013, 52, 729–742.
- 4M. Haruta, Catal. Today 1997, 36, 153–166.
- 5G. C. Bond, D. T. Thompson, Catal. Rev. Sci. Eng. 1999, 41, 319–388.
- 6M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293–346.
- 7A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211.
- 8A. Stephen, K. Hashmi, Gold Bull. 2004, 37, 51–65.
- 9D.-A. Roşca, J. Fernandez-Cestau, J. Morris, J. A. Wright, M. Bochmann, Sci. Adv. 2015, 1, e1500761.
- 10H. Masatake, K. Tetsuhiko, S. Hiroshi, Y. Nobumasa, Chem. Lett. 1987, 16, 405–408.
- 11G. J. Hutchings, Gold Bull. 1996, 29, 123–130.
- 12F. Calderazzo, D. B. Dell′Amico, Inorg. Chem. 1982, 21, 3639–3642.
- 13D. B. D. Amico, F. Calderazzo, Gold Bull. 1997, 30, 21–24.
- 14S. Qiu, R. Ohnishi, M. Ichikawa, J. Phys. Chem. 1994, 98, 2719–2721.
- 15F. Shi, Y. Deng, H. Yang, T. SiMa, Chem. Commun. 2001, 345–346.
- 16F. Shi, Y. Deng, Chem. Commun. 2001, 443–444.
- 17G. Bond, Gold Bull. 2009, 42, 337–342.
- 18J. A. Rodriguez, Catal. Today 2011, 160, 3–10.
- 19Q. Xu, Y. Imamura, M. Fujiwara, Y. Souma, J. Org. Chem. 1997, 62, 1594–1598.
- 20A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896–7936.
- 21N. Tsumori, Q. Xu, M. Hirahara, S. Tanihata, Y. Souma, Y. Nishimura, N. Kuriyama, S. Tsubota, Bull. Chem. Soc. Jpn. 2002, 75, 2257–2268.
- 22J. Guzman, S. Carrettin, A. Corma, J. Am. Chem. Soc. 2005, 127, 3286–3287.
- 23J. Donau, Monatsh. Chem. 1905, 26, 525–530.
- 24L. A. Pretzer, Q. X. Nguyen, M. S. Wong, J. Phys. Chem. C 2010, 114, 21226–21233.
- 25B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, N. J. Halas, Langmuir 2008, 24, 14166–14171.
- 26Y. Kang, X. Ye, C. B. Murray, Angew. Chem. Int. Ed. 2010, 49, 6156–6159.
- 27A. J. Lupinetti, S. H. Strauss, G. Frenking, Prog. Inorg. Chem. 2001, 49, 1–112.
- 28P. G. Jones, Z. Naturforsch. B 1982, 37, 823–824.
- 29H. V. R. Dias, W. Jin, Inorg. Chem. 1996, 35, 3687–3694.
- 30R. Küster, K. Seppelt, Z. Anorg. Allg. Chem. 2000, 626, 236–240.
- 31C. Dash, P. Kroll, M. Yousufuddin, H. V. R. Dias, Chem. Commun. 2011, 47, 4478–4480.
- 32H. V. R. Dias, C. Dash, M. Yousufuddin, M. A. Celik, G. Frenking, Inorg. Chem. 2011, 50, 4253–4255.
- 33S. Martínez-Salvador, J. Forniés, A. Martín, B. Menjón, Angew. Chem. Int. Ed. 2011, 50, 6571–6574.
- 34J. Schaefer, A. Kraft, S. Reininger, G. Santiso-Quinones, D. Himmel, N. Trapp, U. Gellrich, B. Breit, I. Krossing, Chem. Eur. J. 2013, 19, 12468–12485.
- 35A. S. Romanov, M. Bochmann, Organometallics 2015, 34, 2439–2454.
- 36S. Martínez-Salvador, L. R. Falvello, A. Martín, B. Menjón, Chem. Sci. 2015, 6, 5506–5510.
- 37D. B. Dell′Amico, F. Calderazzo, P. Robino, A. Segre, J. Chem. Soc. Dalton Trans. 1991, 3017–3020.
- 38H. Willner, F. Aubke, Inorg. Chem. 1990, 29, 2195–2200.
- 39H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter, F. Aubke, J. Am. Chem. Soc. 1992, 114, 8972–8980.
- 40P. K. Hurlburt, J. J. Rack, J. S. Luck, S. F. Dec, J. D. Webb, O. P. Anderson, S. H. Strauss, J. Am. Chem. Soc. 1994, 116, 10003–10014.
- 41M. Adelhelm, W. Bacher, E. G. Höhn, E. Jacob, Chem. Ber. 1991, 124, 1559–1561.
- 42G. Frenking, I. Fernández, N. Holzmann, S. Pan, I. Krossing, M. Zhou, JACS Au 2021, 1, 623–645.
- 43M. Joost, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2014, 53, 14512–14516.
- 44H. V. R. Dias, M. Fianchini, Angew. Chem. Int. Ed. 2007, 46, 2188–2191.
- 45C. Pettinari, Scorpionates II: Chelating Borate Ligands, Imperial College Press, London, 2008.
10.1142/p527 Google Scholar
- 46J. McQuade, F. Jäkle, Dalton Trans. 2023, 52, 10278–10285.
- 47B. T. Watson, M. Vanga, A. Noonikara-Poyil, A. Muñoz-Castro, H. V. R. Dias, Inorg. Chem. 2023, 62, 1636–1648.
- 48M. Vanga, A. Noonikara-Poyil, J. Wu, H. V. R. Dias, Organometallics 2022, 41, 1249–1260.
- 49M. Vanga, A. Muñoz-Castro, H. V. R. Dias, Dalton Trans. 2022, 51, 1308–1312.
- 50J. Dewar, Bull. Soc. Chim. Fr. 1951, 18, C71–C79.
- 51J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953, 2939–2947.
- 52G. Frenking, C. Loschen, A. Krapp, S. Fau, S. H. Strauss, J. Comput. Chem. 2007, 28, 117–126.
- 53K. Fujisawa, T. Ono, Y. Ishikawa, N. Amir, Y. Miyashita, K.-i. Okamoto, N. Lehnert, Inorg. Chem. 2006, 45, 1698–1713.
- 54R. R. Conry, G. Ji, A. A. Tipton, Inorg. Chem. 1999, 38, 906–913.
- 55S. Imai, K. Fujisawa, T. Kobayashi, N. Shirasawa, H. Fujii, T. Yoshimura, N. Kitajima, Y. Moro-oka, Inorg. Chem. 1998, 37, 3066–3070.
- 56See for large, long range coupling in a related system: M. Vanga, V. Q. H. Phan, J. Wu, A. Muñoz-Castro, H. V. R. Dias, Inorg. Chem. 2023, 62, 18563–18572.
- 57B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832–2838.
- 58I. Fernández, A. Noonikara-Poyil, H. V. R. Dias, J. Comput. Chem. 2022, 43, 796–803.
- 59P. K. Hurlburt, O. P. Anderson, S. H. Strauss, J. Am. Chem. Soc. 1991, 113, 6277–6278.
- 60S. H. Strauss, J. Chem. Soc. Dalton Trans. 2000, 1–6.
- 61F. Rekhroukh, C. Blons, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, Chem. Sci. 2017, 8, 4539–4545.
- 62L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3–10.
- 63G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- 64G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
- 65O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- 66Amsterdam Density Functional (ADF 2019) Code, Theoretical Chemistry, Vrije Universiteit, Amsterdam (The Netherlands), http://www.scm.com.
- 67A. D. Becke, Phys. Rev. A 1988, 38, 3098–3100.
- 68S. Grimme, WIREs Comput. Mol. Sci. 2011, 1, 211–228.
- 69L. Versluis, T. Ziegler, J. Chem. Phys. 1988, 88, 322–328.
- 70M. v. Hopffgarten, G. Frenking, WIREs Comput. Mol. Sci. 2012, 2, 43–62.
- 71T. Ziegler, A. Rauk, Theor. Chim. Acta 1977, 46, 1–10.
- 72M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962–975.