Gold-Promoted Biocompatible Selenium Arylation of Small Molecules, Peptides and Proteins
Dr. Douglas H. Nakahata
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorIoannis Kanavos
Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux – IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053 Pau, France
Search for more papers by this authorDr. Maria Zubiria-Ulacia
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorAlex Inague
Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000 SP, Brazil
Search for more papers by this authorProf. Luca Salassa
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Bizkaia, Spain
Search for more papers by this authorProf. Ryszard Lobinski
Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux – IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053 Pau, France
Search for more papers by this authorProf. Sayuri Miyamoto
Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000 SP, Brazil
Search for more papers by this authorProf. Jon Mattin Matxain
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorDr. Luisa Ronga
Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux – IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053 Pau, France
Search for more papers by this authorCorresponding Author
Dr. Raphael E. F. de Paiva
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorDr. Douglas H. Nakahata
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorIoannis Kanavos
Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux – IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053 Pau, France
Search for more papers by this authorDr. Maria Zubiria-Ulacia
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorAlex Inague
Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000 SP, Brazil
Search for more papers by this authorProf. Luca Salassa
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Bizkaia, Spain
Search for more papers by this authorProf. Ryszard Lobinski
Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux – IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053 Pau, France
Search for more papers by this authorProf. Sayuri Miyamoto
Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, 05508000 SP, Brazil
Search for more papers by this authorProf. Jon Mattin Matxain
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU, Donostia, Spain, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorDr. Luisa Ronga
Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux – IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, 64053 Pau, France
Search for more papers by this authorCorresponding Author
Dr. Raphael E. F. de Paiva
Donostia International Physics Center – DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia, Euskadi, Gipuzkoa, Spain
Search for more papers by this authorGraphical Abstract
Organometallic gold(III) compounds are introduced here as a valuable addition to the toolkit of metal-based systems apt at facilitating selenium arylation, with applications spanning from synthetic chemistry to selenoprotein modification. By combining multinuclear NMR, LC–MS and DFT we show that the compound [Au(bnpy)Cl2] enables the arylation of diselenides and selenols present in small molecules, peptides, and proteins via a redox-based mechanism.
Abstract
A low pKa (5.2), high polarizable volume (3.8 Å), and proneness to oxidation under ambient conditions make selenocysteine (Sec, U) a unique, natural reactive handle present in most organisms across all domains of life. Sec modification still has untapped potential for site-selective protein modification and probing. Herein we demonstrate the use of a cyclometalated gold(III) compound, [Au(bnpy)Cl2], in the arylation of diselenides of biological significance, with a scope covering small molecule models, peptides, and proteins using a combination of multinuclear NMR (including 77Se NMR), and LC–MS. Diphenyl diselenide (Ph−Se)2 and selenocystine, (Sec)2, were used for reaction optimization. This approach allowed us to demonstrate that an excess of diselenide (Au/Se−Se) and an increasing water percentage in the reaction media enhance both the conversion and kinetics of the C−Se coupling reaction, a combination that makes the reaction biocompatible. The C−Se coupling reaction was also shown to happen for the diselenide analogue of the cyclic peptide vasopressin ((Se−Se)-AVP), and the Bos taurus glutathione peroxidase (GPx1) enzyme in ammonium acetate (2 mM, pH=7.0). The reaction mechanism, studied by DFT revealed a redox-based mechanism where the C−Se coupling is enabled by the reductive elimination of the cyclometalated Au(III) species into Au(I).
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202304050-sup-0001-misc_information.pdf9.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. L. Schmidt, M. Simonović, Croat Med J 2012, 53, 535–550.
- 2H. J. Reich, R. J. Hondal, ACS Chem. Biol. 2016, 11, 821–841.
- 3E. S. J. Arnér, Exp. Cell Res. 2010, 316, 1296–1303.
- 4C. Zhang, E. V. Vinogradova, A. M. Spokoyny, S. L. Buchwald, B. L. Pentelute, Angew. Chem. Int. Ed. 2019, 58, 4810–4839.
- 5R. Mousa, R. Notis Dardashti, N. Metanis, Angew. Chem. Int. Ed. 2017, 56, 15818–15827.
- 6Z. Zhao, D. Shimon, N. Metanis, J. Am. Chem. Soc. 2021, 143, 12817–12824.
- 7D. L. Hatfield, P. A. Tsuji, B. A. Carlson, V. N. Gladyshev, Trends Biochem. Sci. 2014, 39, 112–120.
- 8S. P. Short, C. S. Williams, in Advances in Cancer Research (Eds.: K. D. Tew, F. Galli), Academic Press, 2017, pp. 49–83.
- 9W. Wu, D. Li, X. Feng, F. Zhao, C. Li, S. Zheng, J. Lyu, BMC Medical Genomics 2021, 14, 78.
- 10P. Arsenyan, S. Lapcinska, A. Ivanova, J. Vasiljeva, Eur. J. Org. Chem. 2019, 2019, 4951–4961.
- 11D. T. Cohen, C. Zhang, B. L. Pentelute, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 9784–9787.
- 12I. P. Beletskaya, V. P. Ananikov, Chem. Rev. 2022, 122, 16110–16293.
- 13J. M. Stauber, E. A. Qian, Y. Han, A. L. Rheingold, P. Král, D. Fujita, A. M. Spokoyny, J. Am. Chem. Soc. 2020, 142, 327–334.
- 14J. Wang, C. Wei, X. Li, P. Zhao, C. Shan, L. Wojtas, H. Chen, X. Shi, Chem. Eur. J. 2020, 26, 5946–5950.
- 15O. Epp, R. Ladenstein, A. Wendel, Eur. J. Biochem. 1983, 133, 51–69.
- 16R. E. F. De Paiva, Z. Du, D. H. Nakahata, F. A. Lima, P. P. Corbi, N. P. Farrell, Angew. Chem. Int. Ed. 2018, 57, 9305–9309.
- 17M. N. Wenzel, R. Bonsignore, S. R. Thomas, D. Bourissou, G. Barone, A. Casini, Chem. Eur. J. 2019, 25, 7628–7634.
- 18S. R. Thomas, R. Bonsignore, J. Sánchez Escudero, S. M. Meier-Menches, C. M. Brown, M. O. Wolf, G. Barone, L. Y. P. Luk, A. Casini, ChemBioChem 2020, 21, 3071–3076.
- 19S. Gukathasan, S. Parkin, E. P. Black, S. G. Awuah, Inorg. Chem. 2021, 60, 14582–14593.
- 20K. Tsubokura, K. K. H. Vong, A. R. Pradipta, A. Ogura, S. Urano, T. Tahara, S. Nozaki, H. Onoe, Y. Nakao, R. Sibgatullina, A. Kurbangalieva, Y. Watanabe, K. Tanaka, Angew. Chem. Int. Ed. 2017, 56, 3579–3584.
- 21Y. Lin, K. Vong, K. Matsuoka, K. Tanaka, Chem. - Eur. J. 2018, 24, 10595–10600.
- 22P. Ahmadi, K. Muguruma, T.-C. Chang, S. Tamura, K. Tsubokura, Y. Egawa, T. Suzuki, N. Dohmae, Y. Nakao, K. Tanaka, Chem. Sci. 2021, 12, 12266–12273.
- 23L. Rocchigiani, M. Bochmann, Chem. Rev. 2021, 121, 8364–8451.
- 24G. Moreno-Alcántar, P. Picchetti, A. Casini, Angewandte Chemie International Edition 2023, n/a, e202218000.
- 25R. T. Mertens, S. Gukathasan, A. S. Arojojoye, C. Olelewe, S. G. Awuah, Chem. Rev. 2023, DOI: 10.1021/acs.chemrev.2c00649.
- 26H. Duddeck, in Chemical Shifts and Coupling Constants for Selenium-77 (Eds.: R. R. Gupta, M. D. Lechner), Springer-Verlag, Berlin/Heidelberg, 2004, pp. 1–11.
- 27M. S. Silva, D. Alves, D. Hartwig, R. G. Jacob, G. Perin, E. J. Lenardão, Asian J. Org. Chem. 2021, 10, 91–128.
- 28M. Yoshimura, B. Conway-Campbell, Y. Ueta, Peptides 2021, 142, 170555.
- 29E. Cordeau, C. Arnaudguilhem, B. Bouyssiere, A. Hagège, J. Martinez, G. Subra, S. Cantel, C. Enjalbal, PLoS One 2016, 11, e0157943.
- 30M. Mobli, D. Morgenstern, G. F. King, P. F. Alewood, M. Muttenthaler, Angew. Chem. Int. Ed. 2011, 50, 11952–11955.
- 31J. Lamarche, E. A. Álvarez, E. Cordeau, C. Enjalbal, L. Massai, L. Messori, R. Lobinski, L. Ronga, Dalton Trans. 2021, 50, 17487–17490.
- 32L. Ronga, I. Tolbatov, E. Giorgi, P. Pisarek, C. Enjalbal, A. Marrone, D. Tesauro, R. Lobinski, T. Marzo, D. Cirri, A. Pratesi, Inorg. Chem. 2023, 62, 10389–10396.
- 33M. Bernabeu De Maria, D. Tesauro, F. Prencipe, M. Saviano, L. Messori, C. Enjalbal, R. Lobinski, L. Ronga, Inorg. Chem. 2023, acs.inorgchem. 3c01708.
- 34R. Quaderer, D. Hilvert, Chem. Commun. 2002, 2620–2621.
- 35S. Ma, R. M. Caprioli, K. E. Hill, R. F. Burk, J. Am. Soc. Mass Spectrom. 2003, 14, 593–600.
- 36P. Gettins, D. Dyal, B. Crews, Arch. Biochem. Biophys. 1992, 294, 511–518.
- 37M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T. L. Madden, Nucleic Acids Res. 2008, 36, W5–W9.
- 38K. K.-Y. Kung, H.-M. Ko, J.-F. Cui, H.-C. Chong, Y.-C. Leung, M.-K. Wong, Chem. Commun. 2014, 50, 11899–11902.
- 39A. Bindoli, M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini, L. Messori, Coord. Chem. Rev. 2009, 253, 1692–1707.
- 40M. Bernabeu de Maria, J. Lamarche, L. Ronga, L. Messori, J. Szpunar, R. Lobinski, Coord. Chem. Rev. 2023, 474, 214836.
- 41I. J. Pickering, Q. Cheng, E. M. Rengifo, S. Nehzati, N. V. Dolgova, T. Kroll, D. Sokaras, G. N. George, E. S. J. Arnér, Inorg. Chem. 2020, 59, 2711–2718.
- 42L. Skos, C. Schmidt, S. Thomas, M. Park, R. Bonsignore, G. Del Favero, T. Mohr, A. Bileck, C. Gerner, A. Casini, S. M. Meier-Menches, ChemRxiv. 2023, DOI: 10.26434/chemrxiv-2023-plbdr.
- 43V. Gandin, A. P. Fernandes, M. P. Rigobello, B. Dani, F. Sorrentino, F. Tisato, M. Björnstedt, A. Bindoli, A. Sturaro, R. Rella, C. Marzano, Biochem. Pharmacol. 2010, 79, 90–101.
- 44J. R. Roberts, C. F. Shaw, Biochem. Pharmacol. 1998, 55, 1291–1299.
- 45M. A. Baker, A. L. Tappel, Biochem. Pharmacol. 1986, 35, 2417–2422.
- 46M. Pia Rigobello, L. Messori, G. Marcon, M. Agostina Cinellu, M. Bragadin, A. Folda, G. Scutari, A. Bindoli, J. Inorg. Biochem. 2004, 98, 1634–1641.
- 47D. M. Cheff, Q. Cheng, H. Guo, J. Travers, C. Klumpp-Thomas, M. Shen, E. S. J. Arnér, M. D. Hall, Redox Biology 2023, 63, 102719.
- 48A. Nijamudheen, A. Datta, Chemistry A European J 2020, 26, 1442–1487.
- 49B. Huang, M. Hu, F. D. Toste, Trends Chem. 2020, 2, 707–720.
- 50M. S. Messina, J. M. Stauber, M. A. Waddington, A. L. Rheingold, H. D. Maynard, A. M. Spokoyny, J. Am. Chem. Soc. 2018, 140, 7065–7069.
- 51R. Bonsignore, S. R. Thomas, M. Rigoulet, C. Jandl, A. Pöthig, D. Bourissou, G. Barone, A. Casini, Chem. Eur. J. 2021, 27, 14322–14334.
- 52R. Bonsignore, S. R. Thomas, W. T. Klooster, S. J. Coles, R. L. Jenkins, D. Bourissou, G. Barone, A. Casini, Chemistry A European J 2020, 26, 4226–4231.
- 53M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01.
- 54P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864–B871.
- 55W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133–A1138.
- 56Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- 57G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
- 58D. Figgen, K. A. Peterson, M. Dolg, H. Stoll, J. Chem. Phys. 2009, 130, 164108.
- 59R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 2008, 72, 650–654.
10.1063/1.438955 Google Scholar
- 60H.-M. Ko, J.-R. Deng, J.-F. Cui, K. K.-Y. Kung, Y.-C. Leung, M.-K. Wong, Bioorg. Med. Chem. 2020, 28, 115375.
- 61S. M. Meier, C. Gerner, B. K. Keppler, M. A. Cinellu, A. Casini, Inorg. Chem. 2016, 55, 4248–4259.