Influence of O−H⋅⋅⋅Pt interactions on photoluminescent response in the (Et4N)2{[Pt(bph)(CN)2][phenylene-1,4-diresorcinol]} framework
Dorota Glosz
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorKatarzyna Jędrzejowska
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorGrzegorz Niedzielski
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorDr. Jedrzej Kobylarczyk
Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow, Poland
Search for more papers by this authorJakub J. Zakrzewski
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorDr. James G. M. Hooper
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Search for more papers by this authorDr. Marlena Gryl
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Search for more papers by this authorProf. Igor O. Koshevoy
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorCorresponding Author
Prof. Robert Podgajny
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Search for more papers by this authorDorota Glosz
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorKatarzyna Jędrzejowska
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorGrzegorz Niedzielski
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorDr. Jedrzej Kobylarczyk
Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow, Poland
Search for more papers by this authorJakub J. Zakrzewski
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland
Search for more papers by this authorDr. James G. M. Hooper
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Search for more papers by this authorDr. Marlena Gryl
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Search for more papers by this authorProf. Igor O. Koshevoy
Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
Search for more papers by this authorCorresponding Author
Prof. Robert Podgajny
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
Search for more papers by this authorGraphical Abstract
Photoluminescence (PL) of the [PtII(C C)(CN)2]2– complexes are tunable via the modification of ligands, intermolecular interactions and type of molecular aggregation. SC XRD, PL, and DFT unite to discriminate the rare RO−H⋅⋅⋅Pt synthons to be responsible for the emission redshift, the RO−H⋅⋅⋅Ncomplex synthons being less critical. The plausible continuum of RO−H⋅⋅⋅Pt contacts is indicated as the broad space for the PL continuous tuning.
Abstract
Tunable photoluminescence (PL) is one of the hot topics in current materials science, and research performed on the molecular phases is at the forefront of this field. We present the new (Et4N)2[PtII(bph)(CN)2]⋅rez3⋅1/3H2O (Pt2rez3) (bph=biphenyl-2,2’-diyl; rez3=3,3”,5,5”-tetrahydroxy-1,1’:4’,1”-terphenyl, phenylene-1,4-diresorcinol coformer, a linear quaternary hydrogen bond donor) co-crystal salt based on the recently appointed promising [PtII(bph)(CN)2]2– luminophore. Within the extended hydrogen-bonded subnetwork [PtII(bph)(CN)2]2– complexes and rez3 coformer molecules form two types of contacts: the rez3O−H⋅⋅⋅Ncomplex ones in the equatorial plane of the complex and non-typical rez3O−H⋅⋅⋅Pt ones along its axial direction. The combined structural, PL, and DFT approach identified the rez3O−H⋅⋅⋅Pt synthons to be crucial in promoting the noticeable uniform redshift of bph ligand centered (LC) emission compared to the LC emission of the (Et4N)2[PtII(bph)(CN)2]⋅H2O (Pt2) precursor, owing to the direct interference of the phenol group with the PtII-bph orbital system via altering the CT processes within. The high-resolution emission spectra for Pt2 and Pt2rez3 were successfully reproduced at 77 K by using the Franck-Cordon expressions. The possibility to tune PL properties along the plausible continuum of rez3O−H⋅⋅⋅Pt synthons is indicated, considering various scenarios of molecular occupation of the space above and below the complex plane.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202400797-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. K. Ulaganathan, P. K. Roy, S. M. Mhatre, R. C. Murugesan, W. Chen, M. Lai, A. Subramanian, C. Lin, Y. Chang, S. Canulescu, A. Rozhin, C. Liang, R. Sankar, Adv. Funct. Mater. 2023, 33, 2214078.
- 2M. A. Cassingham, Y. G. Goh, E. T. McClure, T. L. Hodgkins, W. Zhang, M. Liang, J. M. Dawlaty, P. I. Djurovich, R. Haiges, P. S. Halasyamani, C. N. Savory, M. E. Thompson, B. C. Melot, ACS Appl. Mater. Interfaces 2023, 15, 18006–18011.
- 3E. R. Dohner, E. T. Hoke, H. I. Karunadasa, J. Am. Chem. Soc. 2014, 136, 1718–1721.
- 4Y. Ai, R. Sun, W. Liao, X. Song, Y. Tang, B. Wang, Z. Wang, S. Gao, R. Xiong, Angew. Chem. Int. Ed. 2022, 61, e2022060.
- 5J.-J. Liu, Y.-F. Guan, C. Jiao, M.-J. Lin, C.-C. Huang, W.-X. Dai, Dalton Trans. 2015, 44, 5957–5960.
- 6M.-H. Tremblay, A. M. Zeidell, S. Rigin, C. Tyznik, J. Bacsa, Y. Zhang, K. Al Kurdi, O. D. Jurchescu, T. V. Timofeeva, S. Barlow, S. R. Marder, Inorg. Chem. 2020, 59, 8070–8080.
- 7W. Zhang, H.-Y. Ye, R. Graf, H. W. Spiess, Y.-F. Yao, R.-Q. Zhu, R.-G. Xiong, J. Am. Chem. Soc. 2013, 135, 5230–5233.
- 8M. Rok, G. Bator, W. Medycki, M. Zamponi, S. Balčiūnas, M. Šimėnas, J. Banys, Dalton Trans. 2018, 47, 17329–17341.
- 9T. Vijayakanth, S. Sahoo, P. Kothavade, V. Bhan Sharma, D. Kabra, J. K. Zaręba, K. Shanmuganathan, R. Boomishankar, Angew. Chem. Int. Ed. 2023, 62, e202214984.
- 10M. Rok, M. Moskwa, M. Działowa, A. Bieńko, C. Rajnák, R. Boča, G. Bator, Dalton Trans. 2019, 48, 16650–16660.
- 11M.-H. You, M.-H. Li, Y.-F. Liu, H.-H. Li, M.-J. Lin, CrystEngComm 2019, 21, 6688–6692.
- 12M. Ma̧czka, A. Nowok, J. K. Zaréba, D. Stefańska, A. Ga̧gor, M. Trzebiatowska, A. Sieradzki, ACS Appl. Mater. Interfaces 2022, 14, 1460–1471.
- 13C. Shi, H. Yu, Q. Wang, L. Ye, Z. Gong, J. Ma, J. Jiang, M. Hua, C. Shuai, Y. Zhang, H. Ye, Angew. Chem. Int. Ed. 2020, 59, 167–171.
- 14E. Kuzniak-Glanowska, D. Glosz, G. Niedzielski, J. Kobylarczyk, M. Srebro-Hooper, J. G. M. Hooper, R. Podgajny, Dalton Trans. 2021, 50, 170–185.
- 15L. Catalano, J. Berthaud, G. Dushaq, D. P. Karothu, R. Rezgui, M. Rasras, S. Ferlay, M. W. Hosseini, P. Naumov, Adv. Funct. Mater. 2020, 30, 2003443.
- 16J.-J. Liu, Y. Wang, M.-J. Lin, C.-C. Huang, W.-X. Dai, Dalton Trans. 2015, 44, 484–487.
- 17J. Liao, L. Meng, J. Jia, D. Liang, X. Chen, R. Yu, X. Kuang, C. Lu, Chem. Eur. J. 2018, 24, 10498–10502.
- 18J.-Z. Liao, X.-J. Dui, H.-L. Zhang, X.-Y. Wu, C.-Z. Lu, CrystEngComm 2014, 16, 10530–10533.
- 19P. Hao, H. Zhu, Y. Pang, J. Shen, Y. Fu, Cryst. Growth Des. 2020, 20, 345–351.
- 20E. Grothe, H. Meekes, E. Vlieg, J. H. ter Horst, R. de Gelder, Cryst. Growth Des. 2016, 16, 3237–3243.
- 21M. W. Hosseini, Acc. Chem. Res. 2005, 38, 313–323.
- 22M. Paul, G. R. Desiraju, Angew. Chem. Int. Ed. 2019, 58, 12027–12031.
- 23M. Rajkumar, G. R. Desiraju, IUCrJ 2021, 8, 178–185.
- 24T. Ono, Y. Hisaeda, J. Mater. Chem. C 2019, 7, 2829–2842.
- 25J. Kobylarczyk, D. Pinkowicz, M. Srebro-Hooper, J. Hooper, R. Podgajny, Dalton Trans. 2017, 46, 3482–3491.
- 26E. Kuzniak, D. Pinkowicz, J. Hooper, M. Srebro-Hooper, Ł. Hetmańczyk, R. Podgajny, Chem. Eur. J. 2018, 24, 16302–16314.
- 27J. Kobylarczyk, D. Pinkowicz, M. Srebro-Hooper, J. Hooper, R. Podgajny, Cryst. Growth Des. 2019, 19, 1215–1225.
- 28E. Kuzniak, J. Hooper, M. Srebro-Hooper, J. Kobylarczyk, M. Dziurka, B. Musielak, D. Pinkowicz, J. Raya, S. Ferlay, R. Podgajny, Inorg. Chem. Front. 2020, 7, 1851–1863.
- 29Y. S. Rosokha, S. V. Lindeman, S. V. Rosokha, J. K. Kochi, Angew. Chem. Int. Ed. 2004, 43, 4650–4652.
- 30B. Han, J. Lu, J. K. Kochi, Cryst. Growth Des. 2008, 8, 1327–1334.
- 31H. T. Chifotides, B. L. Schottel, K. R. Dunbar, Angew. Chem. Int. Ed. 2010, 49, 7202–7207.
- 32S. V. Rosokha, A. Kumar, J. Mol. Struct. 2017, 1138, 129–135.
- 33O. Grounds, M. Zeller, S. V. Rosokha, New J. Chem. 2018, 42, 10572–10583.
- 34S. Kepler, M. Zeller, S. V. Rosokha, J. Am. Chem. Soc. 2019, 141, 9338–9348.
- 35J. Wilson, T. Maxson, I. Wright, M. Zeller, S. V. Rosokha, Dalton Trans. 2020, 49, 8734–8743.
- 36K. Jędrzejowska, J. Kobylarczyk, D. Tabor, M. Srebro-Hooper, K. Kumar, G. Li, O. Stefanczyk, T. M. Muzioł, K. Dziedzic-Kocurek, S. Ohkoshi, R. Podgajny, Inorg. Chem. 2024, 63, 1803–1815.
- 37T. Ogawa, W. M. C. Sameera, M. Yoshida, A. Kobayashi, M. Kato, Dalton Trans. 2018, 47, 5589–5594.
- 38T. Ogawa, W. M. C. Sameera, D. Saito, M. Yoshida, A. Kobayashi, M. Kato, Inorg. Chem. 2018, 57, 14086–14096.
- 39S. Fuertes, A. J. Chueca, A. Martín, V. Sicilia, J. Organomet. Chem. 2019, 889, 53–61.
- 40C. Wakasugi, M. Yoshida, W. M. C. Sameera, Y. Shigeta, A. Kobayashi, M. Kato, Chem. Eur. J. 2020, 26, 5449–5458.
- 41T. Strassner, Acc. Chem. Res. 2016, 49, 2680–2689.
- 42M. Yoshida, M. Kato, Coord. Chem. Rev. 2020, 408, 213194.
- 43T. Ogawa, M. Yoshida, H. Ohara, A. Kobayashi, M. Kato, Chem. Commun. 2015, 51, 13377–13380.
- 44M. Martínez-Junquera, E. Lalinde, M. T. Moreno, Inorg. Chem. 2022, 61, 10898–10914.
- 45D. Saito, T. Ogawa, M. Yoshida, J. Takayama, S. Hiura, A. Murayama, A. Kobayashi, M. Kato, Angew. Chem. Int. Ed. 2020, 59, 18723–18730.
- 46D. Saito, T. Galica, E. Nishibori, M. Yoshida, A. Kobayashi, M. Kato, Chem. Eur. J. 2022, 28, e202200703.
- 47M. Yoshida, V. Sääsk, D. Saito, N. Yoshimura, J. Takayama, S. Hiura, A. Murayama, K. Põhako-Esko, A. Kobayashi, M. Kato, Adv. Opt. Mater. 2022, 10, 2102614.
- 48L. Schneider, V. Sivchik, K. Chung, Y.-T. Chen, A. J. Karttunen, P.-T. Chou, I. O. Koshevoy, Inorg. Chem. 2017, 56, 4459–4467.
- 49M. Yoshida, Y. Makino, T. Sasaki, S. Sakamoto, S. Takamizawa, A. Kobayashi, M. Kato, CrystEngComm 2021, 23, 5891–5898.
- 50B. D. Belviso, F. Marin, S. Fuertes, V. Sicilia, R. Rizzi, F. Ciriaco, C. Cappuccino, E. Dooryhee, A. Falcicchio, L. Maini, A. Altomare, R. Caliandro, Inorg. Chem. 2021, 60, 6349–6366.
- 51L. Brammer, Dalton Trans. 2003, 3145.
- 52J. Kozelka, Noncovalent Forces (Ed. S. Scheiner), Springer Cham, 2015, pp. 129–158.
10.1007/978-3-319-14163-3_6 Google Scholar
- 53M. Baya, Ú. Belío, A. Martín, Inorg. Chem. 2014, 53, 189–200.
- 54O. Kroutil, M. Předota, Z. Chval, Inorg. Chem. 2016, 55, 3252–3264.
- 55G. V. Janjić, M. D. Milosavljević, D. Ž Veljković, S. D. Zarić, Phys. Chem. Chem. Phys. 2017, 19, 8657–8660.
- 56A. Pérez-Bitrián, M. Baya, J. M. Casas, A. Martín, B. Menjón, Dalton Trans. 2021, 50, 5465–5472.
- 57S. Rizzato, J. Bergès, S. A. Mason, A. Albinati, J. Kozelka, Angew. Chem. Int. Ed. 2010, 49, 7440–7443.
- 58A. Behnia, M. A. Fard, P. D. Boyle, R. J. Puddephatt, Eur. J. Inorg. Chem. 2019, 2019, 2899–2906.
- 59C. Chaumont, P. Mobian, N. Kyritsakas, M. Henry, CrystEngComm 2013, 15, 6845–6862.
- 60G. M. Sheldrick, Acta. Crystallogr. C Struct. Chem. 2015, 71, 3–8.
- 61G. M. Sheldrick, Acta. Crystallogr. A Found. Adv. 2015, 71, 3–8.
- 62L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849–854.
- 63G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- 64P. E. Blöchl, Phys. Rev. B 1994, 50, 17953–17979.
- 65K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.
- 66J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 67S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 68S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 1998, 57, 1505–1509.
- 69A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys. .2006, 125, 224106.
- 70S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. .2017, 13, 1989–2009.
- 71M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminf. 2012, 4, 17.
- 72E. I. Izgorodina, U. L. Bernard, P. M. Dean, J. M. Pringle, D. R. MacFarlane, Cryst. Growth Des. 2009, 9, 4834–4839.
- 73E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, Pure Appl. Chem. 2011, 83, 1637–1641.
- 74A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
- 75E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170–173.
- 76R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.
- 77T. A. Keith, AIMAll, TK Gristmill Software, Overland Park KS, 2019.
- 78R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, WIREs Comput. Mol. Sci. 2018, 8, e1360.
- 79R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D'Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rerat, S. Casassa, CRYSTAL17 User's Manual, University Of Torino, Torino, 2017.
- 80J. G. Richardson, E. T. Broadhurst, H. Benjamin, C. A. Morrison, S. A. Moggach, N. Robertson, CrystEngComm 2021, 23, 6359–6364.
- 81M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian16 Revision C.01, 2016.
- 82P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Crystallogr. 2021, 54, 1006–1011.
- 83K. Jędrzejowska, J. Kobylarczyk, D. Glosz, E. Kuzniak-Glanowska, D. Tabor, M. Srebro-Hooper, J. J. Zakrzewski, K. Dziedzic-Kocurek, T. M. Muzioł, R. Podgajny, Molecules 2022, 27, 4111.
- 84S. Chorazy, J. J. Zakrzewski, J. Wang, S. Ohkoshi, B. Sieklucka, CrystEngComm 2018, 20, 5695–5706.
- 85K. Li, G. S. Ming Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-L. Kwong, C.-M. Che, Chem. Sci. 2016, 7, 1653–1673.