Recent Advances in NIR-Switchable Multi-Redox Systems Based on Organic Molecules
Corresponding Author
Dr. Takashi Harimoto
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Present address: Institute for Molecular Science, Myodaiji, Okazaki, 444-8787 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yusuke Ishigaki
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorCorresponding Author
Dr. Takashi Harimoto
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Present address: Institute for Molecular Science, Myodaiji, Okazaki, 444-8787 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yusuke Ishigaki
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorGraphical Abstract
π-Conjugated organic systems with multi-step redox behavior often exhibit electrochromic properties. Among them, organic molecules that can exhibit ON/OFF switching of NIR absorption are rare but have been developed rapidly. Isolation, structural determination, and electrochemical and spectroscopic measurements of multiple redox states are essential for a better understanding of their natures.
Abstract
Electrochromic systems capable of switching absorption in the near-infrared (NIR) region (750–2500 nm) are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. In general, the development of organic-based systems is needed to reduce the environmental impact and improve biocompatibility. Although extending the switchable spectral range is crucial for the application of organic electrochromic molecules, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, the introduction of heteroatoms into the molecular backbone and/or π-extension could be useful strategies in terms of effective delocalization of charge and spin in the corresponding redox states. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption based on precise control of the redox states, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. Fabian, H. Nakazumi, M. Matsuoka, Chem. Rev. 1992, 92, 1197–1226.
- 2K. Y. Law, Chem. Rev. 1993, 93, 449–486.
- 3G. Chen, H. Sasabe, T. Igarashi, Z. Hong, J. Kido, J. Mater. Chem. A 2015, 3, 14517–14534.
- 4L. Li, X. Dong, J. Li, J. Wei, Dyes Pigm. 2020, 183, 108756.
- 5J. He, Y. J. Jo, X. Sun, W. Qiao, J. Ok, T. Kim, Z. Li, Adv. Funct. Mater. 2021, 31, 2008201.
- 6D. Meng, R. Zheng, Y. Zhao, E. Zhang, L. Dou, Y. Yang, Adv. Mater. 2022, 34, 2107330.
- 7T. L. Troy, S. N. Thennadil, J. Biomed. Opt. 2001, 6, 167.
- 8J. O. Escobedo, O. Rusin, S. Lim, R. M. Strongin, Curr. Opin. Chem. Biol. 2010, 14, 64–70.
- 9S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, Biomaterials 2011, 32, 7127–7138.
- 10A. Yuan, J. Wu, X. Tang, L. Zhao, F. Xu, Y. Hu, J. Pharm. Sci. 2013, 102, 6–28.
- 11L. Wu, Y. Sun, K. Sugimoto, Z. Luo, Y. Ishigaki, K. Pu, T. Suzuki, H.-Y. Chen, D. Ye, J. Am. Chem. Soc. 2018, 140, 16340–16352.
- 12H.-B. Cheng, Y. Li, B. Z. Tang, J. Yoon, Chem. Soc. Rev. 2020, 49, 21–31.
- 13B. Li, M. Zhao, F. Zhang, ACS Macro Lett. 2020, 2, 905–917.
- 14L. Wu, Y. Ishigaki, Y. Hu, K. Sugimoto, W. Zeng, T. Harimoto, Y. Sun, J. He, T. Suzuki, X. Jiang, H.-Y. Chen, D. Ye, Nat. Commun. 2020, 11, 446.
- 15S. Ghosh, S. Cherumukkil, C. H. Suresh, A. Ajayaghosh, Adv. Mater. 2017, 29, 1703783.
- 16H. Han, Y. J. Lee, J. Kyhm, J. S. Jeong, J. Han, M. K. Yang, K. M. Lee, Y. Choi, T. Yoon, H. Ju, S. Ahn, J. A. Lim, Adv. Funct. Mater. 2020, 30, 2006236.
- 17X. Han, X. Chen, T. Gordon, S. Holdcroft, Macromol. Rapid Commun. 2009, 30, 2089–2095.
- 18T. Okamura, T. Kitagawa, K. Koike, S. Fukuda, J. Soc. Inf. Disp. 2004, 12, 527–531.
- 19K. Yang, L. Wang, Q. Zhang, J. Mater. Sci. Mater. Electron. 2015, 26, 2222–2229.
- 20L. Wu, Y. Ishigaki, W. Zeng, T. Harimoto, B. Yin, Y. Chen, S. Liao, Y. Liu, Y. Sun, X. Zhang, Y. Liu, Y. Liang, P. Sun, T. Suzuki, G. Song, Q. Fan, D. Ye, Nat. Commun. 2021, 12, 6145.
- 21H. Sies, R. J. Mailloux, U. Jakob, Nat. Rev. Mol. Cell Biol. 2024, 25, 701–719.
- 22T. Ikeda, K. Kano, J. Biosci. Bioeng. 2001, 92, 9–18.
- 23R. J. P. Williams, Mol. Phys. 1989, 68, 1–23.
- 24B. Fabre, Chem. Rev. 2016, 116, 4808–4849.
- 25H. Bronstein, C. B. Nielsen, B. C. Schroeder, I. McCulloch, Nat. Chem. Rev. 2020, 4, 66–77.
- 26G. L. Soloveichik, Chem. Rev. 2015, 115, 11533–11558.
- 27Y. Ding, C. Zhang, L. Zhang, Y. Zhou, G. Yu, Chem. Soc. Rev. 2018, 47, 69–103.
- 28J. Heiska, M. Nisula, M. Karppinen, J. Mater. Chem. A 2019, 7, 18735–18758.
- 29P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang, Y. Yao, Chem. Rev. 2020, 120, 6490–6557.
- 30Y. Li, Q. Qian, X. Zhu, Y. Li, M. Zhang, J. Li, C. Ma, H. Li, J. Lu, Q. Zhang, InfoMat 2020, 2, 995–1033.
- 31C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, The Netherlands, 1995.
- 32P. Monk, R. Mortimer, D. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, 2007.
10.1017/CBO9780511550959 Google Scholar
- 33R. J. Mortimer, Annu. Rev. Mater. Res. 2011, 41, 241–268.
- 34D. R. Rosseinsky, P. M. S. Monk, R. J. Mortimer, Electrochromic Materials and Devices, Wiley-VCH, Weinheim, Germany, 2013.
10.1002/9783527679850.ch2 Google Scholar
- 35K. Bange, T. Gambke, Adv. Mater. 1990, 2, 10–16.
- 36R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Displays 2006, 27, 2–18.
- 37Z. Wang, X. Wang, S. Cong, J. Chen, H. Sun, Z. Chen, G. Song, F. Geng, Q. Chen, Z. Zhao, Nat. Commun. 2020, 11, 302.
- 38V.-T. Nguyen, B. K. Min, S. K. Kim, Y. Yi, C.-G. Choi, J. Mater. Chem. C 2021, 9, 3183–3192.
- 39Y. Wang, H. Nie, J. Han, Y. An, Y.-M. Zhang, S. X.-A. Zhang, Light-Sci. Appl. 2021, 10, 33.
- 40P. M. S. Monk, The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4’-Bipyridine, Wiley, Chichester, New York, 1998.
- 41P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268–320.
- 42H. Meng, Organic Electronics for Electrochromic Materials and Devices, Wiley-VCH, Weinheim, 2021.
10.1002/9783527830633 Google Scholar
- 43K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.-C. Ho, J. Mater. Chem. C 2019, 7, 4622–4637.
- 44M. Stolar, Pure Appl. Chem. 2020, 92, 717–731.
- 45T. A. Welsh, E. R. Draper, RSC Adv. 2021, 11, 5245–5264.
- 46K. Fujimoto, A. Osuka, Chem. Eur. J. 2018, 24, 6530–6533.
- 47K. Fujimoto, S. Takimoto, S. Masuda, T. Inuzuka, K. Sanada, M. Sakamoto, M. Takahashi, Chem. Eur. J. 2021, 27, 8951–8955.
- 48S. Yanagi, A. Matsumoto, N. Toriumi, Y. Tanaka, K. Miyamoto, A. Muranaka, M. Uchiyama, Angew. Chem. Int. Ed. 2023, 62, e202218358.
- 49K. Laxman, Y. Che, K. A. Raj, D. F. Perepichka, M. R. Rao, J. Mater. Chem. C 2023, 11, 2680–2687.
- 50Y. Hashikawa, S. Okamoto, Y. Murata, Commun. Chem. 2020, 3, 90.
- 51E. L. Runnerstrom, A. Llordés, S. D. Lounis, D. J. Milliron, Chem. Commun. 2014, 50, 10555–10572.
- 52Z. Wang, W. Gong, X. Wang, Z. Chen, X. Chen, J. Chen, H. Sun, G. Song, S. Cong, F. Geng, Z. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 33917–33925.
- 53M. Gugole, O. Olsson, S. Rossi, M. P. Jonsson, A. Dahlin, Nano Lett. 2021, 21, 4343–4350.
- 54J. Niu, Y. Wang, X. Zou, Y. Tan, C. Jia, X. Weng, L. Deng, Appl. Mater. Today 2021, 24, 101073.
- 55G. A. Corrente, E. Fabiano, F. Manni, G. Chidichimo, G. Gigli, A. Beneduci, A.-L. Capodilupo, Chem. Mater. 2018, 30, 5610–5620.
- 56I. Matsumoto, R. Sekiya, H. Fukui, R. Sun, T. Haino, Angew. Chem. Int. Ed. 2022, 61, e202200291.
- 57G. A. Corrente, D. A. González, E. Aktas, A. L. Capodilupo, G. Mazzone, F. Ruighi, G. Accorsi, D. Imbardelli, C. Rodriguez-Seco, E. Martinez-Ferrero, E. Palomares, A. Beneduci, Adv. Opt. Mater. 2023, 11, 2201506.
- 58J. Shukla, V. P. Singh, P. Mukhopadhyay, ChemistryOpen 2020, 9, 304–324.
- 59J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094–11125.
- 60X. Chen, H. Chen, J. Fraser Stoddart, Angew. Chem. Int. Ed. 2023, 62, e202211387.
- 61L. Zhang, Y. Qiu, W.-G. Liu, H. Chen, D. Shen, B. Song, K. Cai, H. Wu, Y. Jiao, Y. Feng, J. S. W. Seale, C. Pezzato, J. Tian, Y. Tan, X.-Y. Chen, Q.-H. Guo, C. L. Stern, D. Philp, R. D. Astumian, W. A. Goddard, J. F. Stoddart, Nature 2023, 613, 280–286.
- 62J.-C. Lai, X.-R. Lu, B.-T. Qu, F. Liu, C.-H. Li, X.-Z. You, Org. Electron. 2014, 15, 3735–3745.
- 63S. Halder, N. Gupta, R. P. Behere, B. K. Kuila, C. Chakraborty, Mol. Syst. Des. Eng. 2022, 7, 1658–1669.
- 64T. Zubair, M. M. Hasan, R. S. Ramos, R. M. Pankow, J. Mater. Chem. C 2024, 12, 8188–8216.
- 65A. A. Argun, P.-H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. MacDiarmid, J. R. Reynolds, Chem. Mater. 2004, 16, 4401–4412.
- 66C. L. Anderson, T. Zhang, M. Qi, Z. Chen, C. Yang, S. J. Teat, N. S. Settineri, E. A. Dailing, A. Garzón-Ruiz, A. Navarro, Y. Lv, Y. Liu, J. Am. Chem. Soc. 2023, 145, 5474–5485.
- 67C. R. Wade, M. Li, M. Dincă, Angew. Chem. Int. Ed. 2013, 52, 13377–13381.
- 68S. Mondal, D. Chandra Santra, Y. Ninomiya, T. Yoshida, M. Higuchi, ACS Appl. Mater. Interfaces 2020, 12, 58277–58286.
- 69F. Yu, W. Liu, S.-W. Ke, M. Kurmoo, J.-L. Zuo, Q. Zhang, Nat. Commun. 2020, 11, 5534.
- 70D. Bessinger, K. Muggli, M. Beetz, F. Auras, T. Bein, J. Am. Chem. Soc. 2021, 143, 7351–7357.
- 71J. Wang, K. Liu, L. Ma, X. Zhan, Chem. Rev. 2016, 116, 14675–14725.
- 72M. Hirai, N. Tanaka, M. Sakai, S. Yamaguchi, Chem. Rev. 2019, 119, 8291–8331.
- 73H.-J. Yen, G.-S. Liou, Polym. Chem. 2012, 3, 255–264.
- 74J. Nagasaki, S. Hiroto, H. Shinokubo, Chem. Asian J. 2017, 12, 2311–2317.
- 75D. Sakamaki, D. Kumano, E. Yashima, S. Seki, Chem. Commun. 2015, 51, 17237–17240.
- 76G. Zhu, Y. Song, Q. Zhang, W. Ding, X. Chen, Y. Wang, G. Zhang, Org. Chem. Front. 2021, 8, 727–735.
- 77T. D. Selby, S. C. Blackstock, Org. Lett. 1999, 1, 2053–2055.
- 78S. I. Hauck, K. V. Lakshmi, J. F. Hartwig, Org. Lett. 1999, 1, 2057–2060.
- 79A. Ito, Y. Ono, K. Tanaka, Angew. Chem. Int. Ed. 2000, 39, 1072–1075.
10.1002/(SICI)1521-3773(20000317)39:6<1072::AID-ANIE1072>3.0.CO;2-1 CASPubMedWeb of Science®Google Scholar
- 80A. Ito, K. Tanaka, Pure Appl. Chem. 2010, 82, 979–989.
- 81X. Z. Yan, J. Pawlas, T. Goodson, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 9105–9116.
- 82A. Ito, Y. Yamagishi, K. Fukui, S. Inoue, Y. Hirao, K. Furukawa, T. Kato, K. Tanaka, Chem. Commun. 2008, 6573–6575.
- 83D. Sakamaki, A. Ito, K. Furukawa, T. Kato, M. Shiro, K. Tanaka, Angew. Chem. Int. Ed. 2012, 51, 12776–12781.
- 84D. Sakamaki, A. Ito, K. Tanaka, K. Furukawa, T. Kato, M. Shiro, Angew. Chem. Int. Ed. 2012, 51, 8281–8285.
- 85R. Kurata, D. Sakamaki, M. Uebe, M. Kinoshita, T. Iwanaga, T. Matsumoto, A. Ito, Org. Lett. 2017, 19, 4371–4374.
- 86S. Dong, T. Y. Gopalakrishna, Y. Han, C. Chi, Angew. Chem. Int. Ed. 2019, 58, 11742–11746.
- 87F. Zhao, J. Zhao, H. Liu, Y. Wang, J. Duan, C. Li, J. Di, N. Zhang, X. Zheng, P. Chen, J. Am. Chem. Soc. 2023, 145, 10092–10103.
- 88S. Wu, Y. Ni, Y. Han, S. Xin, X. Hou, J. Zhu, Z. Li, J. Wu, J. Am. Chem. Soc. 2022, 144, 23158–23167.
- 89Y. Ma, Y. Han, X. Hou, S. Wu, C. Chi, Angew. Chem. Int. Ed. 2024, e202407990.
- 90S. Dong, Y. Han, Z. Tong, J. Wang, Y. Zhang, A. Li, T. Y. Gopalakrishna, H. Tian, C. Chi, Chem. Sci. 2024, 15, 9087–9095.
- 91J. Ayuso-Carrillo, F. Fina, E. C. Galleposo, R. R. Ferreira, P. K. Mondal, B. D. Ward, D. Bonifazi, J. Am. Chem. Soc. 2024, 146, 16440–16457.
- 92J. A. Joule, Thiophenes, Springer, Heidelberg, 2015.
10.1007/978-3-319-07824-3 Google Scholar
- 93I. McCulloch, M. Heeney, M. L. Chabinyc, D. DeLongchamp, R. J. Kline, M. Cölle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, M. Shkunov, D. Sparrowe, S. Tierney, W. Zhang, Adv. Mater. 2009, 21, 1091–1109.
- 94L. Zhang, N. S. Colella, B. P. Cherniawski, S. C. B. Mannsfeld, A. L. Briseno, ACS Appl. Mater. Interfaces 2014, 6, 5327–5343.
- 95C. B. Nielsen, A. Angerhofer, K. A. Abboud, J. R. Reynolds, J. Am. Chem. Soc. 2008, 130, 9734–9746.
- 96Y. Ni, T. Y. Gopalakrishna, H. Phan, T. Kim, T. S. Herng, Y. Han, T. Tao, J. Ding, D. Kim, J. Wu, Nat. Chem. 2020, 12, 242–248.
- 97D. Canevet, M. Sallé, G. Zhang, D. Zhang, D. Zhu, Chem. Commun. 2009, 2245–2269.
- 98J. L. Segura, N. Martín, Angew. Chem. Int. Ed. 2001, 40, 1372–1409.
10.1002/1521-3773(20010417)40:8<1372::AID-ANIE1372>3.0.CO;2-I CASPubMedWeb of Science®Google Scholar
- 99A. Jana, S. Bähring, M. Ishida, S. Goeb, D. Canevet, M. Sallé, J. O. Jeppesen, J. L. Sessler, Chem. Soc. Rev. 2018, 47, 5614–5645.
- 100M. Iyoda, H. Shimizu, Chem. Soc. Rev. 2015, 44, 6411–6424.
- 101K. Nakamura, T. Takashima, T. Shirahata, S. Hino, M. Hasegawa, Y. Mazaki, Y. Misaki, Org. Lett. 2011, 13, 3122–3125.
- 102M. Takase, N. Yoshida, T. Nishinaga, M. Iyoda, Org. Lett. 2011, 13, 3896–3899.
- 103M. Iyoda, M. Hasegawa, Beilstein J. Org. Chem. 2015, 11, 1596–1613.
- 104K. Lincke, A. Floor Frellsen, C. R. Parker, A. D. Bond, O. Hammerich, M. Brøndsted Nielsen, Angew. Chem. Int. Ed. 2012, 51, 6099–6102.
- 105N. L. Bill, J. M. Lim, C. M. Davis, S. Bähring, J. O. Jeppesen, D. Kim, J. L. Sessler, Chem. Commun. 2014, 50, 6758–6761.
- 106J. Jung, W. Liu, S. Kim, D. Lee, J. Org. Chem. 2019, 84, 6258–6269.
- 107M. Hasegawa, M. Iyoda, Bull. Chem. Soc. Jpn. 2020, 93, 154–162.
- 108K. Deuchert, S. Hünig, Angew. Chem. Int. Ed. Engl. 1978, 17, 875–886.
- 109S. Hünig, Pure Appl. Chem. 1990, 62, 395–406.
- 110P. W. Antoni, M. M. Hansmann, J. Am. Chem. Soc. 2018, 140, 14823–14835.
- 111P. W. Antoni, T. Bruckhoff, M. M. Hansmann, J. Am. Chem. Soc. 2019, 141, 9701–9711.
- 112P. W. Antoni, C. Golz, M. M. Hansmann, Angew. Chem. Int. Ed. 2022, 61, e202203064.
- 113S. Patai, Z. Rappoport, The Quinonoid Compounds: Vol. 1 (1988), John Wiley & Sons, Inc., Chichester, UK, 1988.
- 114S. Patai, Z. Rappoport, The Quinonoid Compounds: Vol. 2 (1988), John Wiley & Sons, Inc., Chichester, UK, 1988.
- 115G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. Ponce Ortiz, C. J. Gómez-García, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado, M. M. Haley, Nat. Chem. 2016, 8, 753–759.
- 116G. E. Rudebusch, G. L. Espejo, J. L. Zafra, M. Peña-Alvarez, S. N. Spisak, K. Fukuda, Z. Wei, M. Nakano, M. A. Petrukhina, J. Casado, M. M. Haley, J. Am. Chem. Soc. 2016, 138, 12648–12654.
- 117S. Dong, T. S. Herng, T. Y. Gopalakrishna, H. Phan, Z. L. Lim, P. Hu, R. D. Webster, J. Ding, C. Chi, Angew. Chem. Int. Ed. 2016, 55, 9316–9320.
- 118J. E. Anthony, D. L. Eaton, S. R. Parkin, Org. Lett. 2002, 4, 15–18.
- 119M. M. Payne, S. R. Parkin, J. E. Anthony, J. Am. Chem. Soc. 2005, 127, 8028–8029.
- 120J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452–483.
- 121N. Nagahora, T. Kushida, K. Shioji, K. Okuma, Organometallics 2019, 38, 1800–1808.
- 122H. Hayashi, J. E. Barker, A. Cárdenas Valdivia, R. Kishi, S. N. MacMillan, C. J. Gómez-García, H. Miyauchi, Y. Nakamura, M. Nakano, S. Kato, M. M. Haley, J. Casado, J. Am. Chem. Soc. 2020, 142, 20444–20455.
- 123A. C. Valdivia, Y. Dai, F. Rambaldi, J. E. Barker, J. J. Dressler, Z. Zhou, Y. Zhu, Z. Wei, M. A. Petrukhina, M. M. Haley, F. Negri, J. Casado, Chem. Eur. J. 2023, 29, e202300388.
- 124S. Mori, M. Akita, S. Suzuki, M. S. Asano, M. Murata, T. Akiyama, T. Matsumoto, C. Kitamura, S. Kato, Chem. Commun. 2020, 56, 5881–5884.
- 125M. A. Majewski, P. J. Chmielewski, A. Chien, Y. Hong, T. Lis, M. Witwicki, D. Kim, P. M. Zimmerman, M. Stępień, Chem. Sci. 2019, 10, 3413–3420.
- 126G. Xie, V. Brosius, J. Han, F. Rominger, A. Dreuw, J. Freudenberg, U. H. F. Bunz, Chem. Eur. J. 2020, 26, 160–164.
- 127H. Reiss, L. Ji, J. Han, S. Koser, O. Tverskoy, J. Freudenberg, F. Hinkel, M. Moos, A. Friedrich, I. Krummenacher, C. Lambert, H. Braunschweig, A. Dreuw, T. B. Marder, U. H. F. Bunz, Angew. Chem. Int. Ed. 2018, 57, 9543–9547.
- 128M. Ito, M. Sakai, N. Ando, S. Yamaguchi, Angew. Chem. Int. Ed. 2021, 60, 21853–21859.
- 129S. Medina Rivero, J. Urieta-Mora, A. Molina-Ontoria, C. Martín-Fuentes, J. I. Urgel, M. Zubiria-Ulacia, V. Lloveras, D. Casanova, J. I. Martínez, J. Veciana, D. Écija, N. Martín, J. Casado, Angew. Chem. Int. Ed. 2021, 60, 17887–17892.
- 130A. Borissov, P. J. Chmielewski, C. J. Gómez García, T. Lis, M. Stępień, Angew. Chem. Int. Ed. 2023, 62, e202309238.
- 131A. Borissov, P. J. Chmielewski, A. C. Valdivia, C. J. G. García, J. Casado, M. Stępień, Angew. Chem. Int. Ed. 2024, 63, e202408510.
- 132B. Prajapati, M. D. Ambhore, D.-K. Dang, P. J. Chmielewski, T. Lis, C. J. Gómez-García, P. M. Zimmerman, M. Stępień, Nat. Chem. 2023, 15, 1541–1548.
- 133M. M. Hansmann, M. Melaimi, D. Munz, G. Bertrand, J. Am. Chem. Soc. 2018, 140, 2546–2554.
- 134D. Rottschäfer, N. K. T. Ho, B. Neumann, H. Stammler, M. van Gastel, D. M. Andrada, R. S. Ghadwal, Angew. Chem. Int. Ed. 2018, 57, 5838–5842.
- 135Y. K. Loh, P. Vasko, C. McManus, A. Heilmann, W. K. Myers, S. Aldridge, Nat. Commun. 2021, 12, 7052.
- 136A. Mahata, S. Chandra, A. Maiti, D. K. Rao, C. B. Yildiz, B. Sarkar, A. Jana, Org. Lett. 2020, 22, 8332–8336.
- 137A. Maiti, F. Zhang, I. Krummenacher, M. Bhattacharyya, S. Mehta, M. Moos, C. Lambert, B. Engels, A. Mondal, H. Braunschweig, P. Ravat, A. Jana, J. Am. Chem. Soc. 2021, 143, 3687–3692.
- 138T. Delouche, A. Vacher, E. Caytan, T. Roisnel, B. Le Guennic, D. Jacquemin, M. Hissler, P. Bouit, Chem. Eur. J. 2020, 26, 8226–8229.
- 139J. Guo, Z. Li, T. Zhang, X. Tian, Y. Wang, C. Dou, Chin. Chem. Lett. 2024, 35, 109337.
- 140Z. Li, T. Y. Gopalakrishna, Y. Han, Y. Gu, L. Yuan, W. Zeng, D. Casanova, J. Wu, J. Am. Chem. Soc. 2019, 141, 16266–16270.
- 141B. Prajapati, D. Dang, P. J. Chmielewski, M. A. Majewski, T. Lis, C. J. Gómez-García, P. M. Zimmerman, M. Stępień, Angew. Chem. Int. Ed. 2021, 60, 22496–22504.
- 142A. E. Tschitschibabin, Ber. Dtsch. Chem. Ges. 1907, 40, 1810–1819.
- 143W. Schlenk, M. Brauns, Ber. Dtsch. Chem. Ges. 1915, 48, 661–669.
- 144Y. Ishigaki, K. Sugawara, T. Tadokoro, Y. Hayashi, T. Harimoto, T. Suzuki, Chem. Commun. 2021, 57, 7201–7214.
- 145Y. Ishigaki, T. Hashimoto, K. Sugawara, S. Suzuki, T. Suzuki, Angew. Chem. Int. Ed. 2020, 59, 6581–6584.
- 146Y. Ishigaki, T. Harimoto, K. Sugawara, T. Suzuki, J. Am. Chem. Soc. 2021, 143, 3306–3311.
- 147Y. Ishigaki, R. Fukagawa, K. Sugawara, T. Harimoto, T. Suzuki, Chem. Asian J. 2022, 17, e202200914.
- 148T. Harimoto, T. Suzuki, Y. Ishigaki, Chem. A Eur. J. 2023, 29, e202203899.
- 149T. Harimoto, Y. Sugai, K. Sugawara, T. Suzuki, Y. Ishigaki, Chem. A Eur. J. 2023, 29, e202301476.
- 150Y. Ishigaki, S. Mizuno, K. Sugawara, T. Hashimoto, S. Suzuki, T. Suzuki, Chem. Eur. J. 2024, 30, e202400916.
- 151Y. Ishigaki, S. Mizuno, T. Harimoto, T. Shimajiri, T. Suzuki, Chem. Asian J. 2024, 19, e202400316.
- 152M. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716.
- 153A. Borissov, Y. K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska, M. Stępień, Chem. Rev. 2022, 122, 565–788.
- 154H. Ueda, S. Yoshimoto, Chem. Rec. 2021, 21, 2411–2429.
- 155T. Harimoto, Y. Ishigaki, ChemPlusChem 2022, 87, e202200013.
- 156A. H. Gomes de Mesquita, C. H. MacGillavry, K. Eriks, Acta Crystallogr. 1965, 18, 437–443.
- 157R. Rathore, P. Le Magueres, S. V. Lindeman, J. K. Kochi, Angew. Chem. Int. Ed. 2000, 39, 809–812.
10.1002/(SICI)1521-3773(20000218)39:4<809::AID-ANIE809>3.0.CO;2-6 CASPubMedWeb of Science®Google Scholar
- 158A. Matsumoto, M. Suzuki, D. Kuzuhara, J. Yuasa, T. Kawai, N. Aratani, H. Yamada, Chem. Commun. 2014, 50, 10956–10958.
- 159S. Tang, L. Zhang, H. Ruan, Y. Zhao, X. Wang, J. Am. Chem. Soc. 2020, 142, 7340–7344.
- 160M. Yamashita, H. Hayashi, M. Suzuki, D. Kuzuhara, J. Yuasa, T. Kawai, N. Aratani, H. Yamada, RSC Adv. 2016, 6, 70700–70703.
- 161Q. Wang, T. Y. Gopalakrishna, H. Phan, T. S. Herng, S. Dong, J. Ding, C. Chi, Angew. Chem. Int. Ed. 2017, 56, 11415–11419.
- 162A. Konishi, Y. Hirao, K. Matsumoto, H. Kurata, T. Kubo, Chem. Lett. 2013, 42, 592–594.
- 163Q. Jiang, H. Wei, X. Hou, C. Chi, Angew. Chem. Int. Ed. 2023, 62, e202306938.
- 164Y. Wang, Q. Gong, S. H. Pun, H. K. Lee, Y. Zhou, J. Xu, Q. Miao, J. Am. Chem. Soc. 2022, 144, 16612–16619.
- 165L. Shan, D. Liu, H. Li, X. Xu, B. Shan, J. Xu, Q. Miao, Adv. Mater. 2015, 27, 3418–3423.
- 166B. Li, C. Yang, X. Wang, G. Li, W. Peng, H. Xiao, S. Luo, S. Xie, J. Wu, Z. Zeng, Angew. Chem. Int. Ed. 2021, 60, 19790–19796.
- 167C. Zhu, K. Shoyama, F. Würthner, Angew. Chem. Int. Ed. 2020, 59, 21505–21509.
- 168M. Umetani, K. Naoda, T. Tanaka, S. Lee, J. Oh, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2016, 55, 6305–6309.
- 169K. Kato, W. Cha, J. Oh, K. Furukawa, H. Yorimitsu, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2016, 55, 8711–8714.
- 170K. Kato, K. Furukawa, A. Osuka, Angew. Chem. Int. Ed. 2018, 57, 9491–9494.
- 171H. Ochiai, K. Furukawa, H. Nakano, Y. Matano, J. Org. Chem. 2021, 86, 2283–2296.
- 172H. Zhylitskaya, J. Cybińska, P. Chmielewski, T. Lis, M. Stępień, J. Am. Chem. Soc. 2016, 138, 11390–11398.
- 173J.-Y. Shin, T. Yamada, H. Yoshikawa, K. Awaga, H. Shinokubo, Angew. Chem. Int. Ed. 2014, 53, 3096–3101.
- 174X.-Y. Wang, X. Yao, K. Müllen, Sci. China Chem. 2019, 62, 1099–1144.
- 175M. Takase, V. Enkelmann, D. Sebastiani, M. Baumgarten, K. Müllen, Angew. Chem. Int. Ed. 2007, 46, 5524–5527.
- 176M. Takase, T. Narita, W. Fujita, M. S. Asano, T. Nishinaga, H. Benten, K. Yoza, K. Müllen, J. Am. Chem. Soc. 2013, 135, 8031–8040.
- 177K. Oki, M. Takase, N. Kobayashi, H. Uno, J. Org. Chem. 2021, 86, 5102–5109.
- 178E. Gońka, P. J. Chmielewski, T. Lis, M. Stępień, J. Am. Chem. Soc. 2014, 136, 16399–16410.
- 179K. Oki, M. Takase, S. Mori, H. Uno, J. Am. Chem. Soc. 2019, 141, 16255–16259.
- 180K. Oki, M. Takase, S. Mori, A. Shiotari, Y. Sugimoto, K. Ohara, T. Okujima, H. Uno, J. Am. Chem. Soc. 2018, 140, 10430–10434.
- 181A. A. Suleymanov, Q. He, P. Müller, T. M. Swager, Org. Lett. 2024, 26, 5227–5231.
- 182Y. Sasaki, M. Takase, N. Kobayashi, S. Mori, K. Ohara, T. Okujima, H. Uno, J. Org. Chem. 2021, 86, 4290–4295.
- 183F. Wu, K. Oki, J. Xue, S. Mori, M. Takase, Z. Shen, H. Uno, Org. Lett. 2022, 24, 80–84.
- 184K. Oki, K. Tagawa, S. Mori, M. Takase, T. Okujima, H. Uno, Chem. Lett. 2017, 46, 243–244.
- 185W. Wang, F. Hanindita, R. D. Webster, S. Ito, CCS Chem. 2023, 5, 1108–1117.
- 186S. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54, 7256–7260.
- 187H. Yokoi, Y. Hiraoka, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Nat. Commun. 2015, 6, 8215.
- 188H. Yokoi, S. Hiroto, H. Shinokubo, J. Am. Chem. Soc. 2018, 140, 4649–4655.
- 189J. Borstelmann, L. Schneider, F. Rominger, F. Deschler, M. Kivala, Angew. Chem. Int. Ed. 2024, 63, e202405570.
- 190M. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor, S. V. Bhosale, Chem. Rev. 2016, 116, 11685–11796.
- 191P. Spenst, F. Würthner, J. Photochem. Photobiol. C 2017, 31, 114–138.
- 192M. Navakouski, H. Zhylitskaya, P. J. Chmielewski, T. Lis, J. Cybińska, M. Stępień, Angew. Chem. Int. Ed. 2019, 58, 4929–4933.
- 193R. Kumar, P. J. Chmielewski, T. Lis, D. Volkmer, M. Stępień, Angew. Chem. Int. Ed. 2022, 61, e202207486.
- 194V. Monnier, F. Odobel, S. Diring, Chem. Commun. 2022, 58, 9429–9432.
- 195X. Tian, Y. Xiao, S. Wang, G. Liu, W. Zhang, L. Zhou, J. Gong, X. Zhang, X. Li, H. Meng, J. Wang, G. Dai, Q. Wang, Org. Lett. 2023, 25, 1605–1610.
- 196S. T. Bao, S. Louie, H. Jiang, Q. Jiang, S. Sun, M. L. Steigerwald, C. Nuckolls, Z. Jin, J. Am. Chem. Soc. 2024, 146, 51–56.
- 197S. Osumi, S. Saito, C. Dou, K. Matsuo, K. Kume, H. Yoshikawa, K. Awaga, S. Yamaguchi, Chem. Sci. 2016, 7, 219–227.
- 198C. Dou, S. Saito, K. Matsuo, I. Hisaki, S. Yamaguchi, Angew. Chem. Int. Ed. 2012, 51, 12206–12210.
- 199L. Yuan, J. Guo, Y. Yang, K. Ye, C. Dou, Y. Wang, CCS Chem. 2023, 5, 876–884.
- 200C. Zhu, X. Ji, D. You, T. L. Chen, A. U. Mu, K. P. Barker, L. M. Klivansky, Y. Liu, L. Fang, J. Am. Chem. Soc. 2018, 140, 18173–18182.
- 201C. Deng, K. K. Hollister, A. Molino, B. Y. E. Tra, D. A. Dickie, D. J. D. Wilson, R. J. Gilliard, J. Am. Chem. Soc. 2024, 146, 6145–6156.
- 202M. Banerjee, S. V. Lindeman, R. Rathore, J. Am. Chem. Soc. 2007, 129, 8070–8071.
- 203M. Banerjee, R. Shukla, R. Rathore, J. Am. Chem. Soc. 2009, 131, 1780–1786.
- 204E. Kayahara, T. Kouyama, T. Kato, H. Takaya, N. Yasuda, S. Yamago, Angew. Chem. Int. Ed. 2013, 52, 13722–13726.
- 205E. Kayahara, T. Kouyama, T. Kato, S. Yamago, J. Am. Chem. Soc. 2016, 138, 338–344.
- 206T. Iwamoto, Y. Watanabe, Y. Sakamoto, T. Suzuki, S. Yamago, J. Am. Chem. Soc. 2011, 133, 8354–8361.
- 207J. Xia, R. Jasti, Angew. Chem. Int. Ed. 2012, 51, 2474–2476.
- 208E. Kayahara, T. Iwamoto, T. Suzuki, S. Yamago, Chem. Lett. 2013, 42, 621–623.
- 209E. Kayahara, V. K. Patel, S. Yamago, J. Am. Chem. Soc. 2014, 136, 2284–2287.
- 210N. Narita, Y. Kurita, K. Osakada, T. Ide, H. Kawai, Y. Tsuchido, Nat. Commun. 2023, 14, 8091.
- 211S. Qiu, Y. Zhao, L. Zhang, Y. Ni, Y. Wu, H. Cong, D.-H. Qu, W. Jiang, J. Wu, H. Tian, Z. Wang, CCS Chem. 2023, 5, 1763–1772.
- 212T. Imai, D. Sakamaki, S. Aoyagi, T. Amaya, Chem. A Eur. J. 2023, 29, e202302670.
- 213D. F. Perepichka, M. R. Bryce, A. S. Batsanov, E. J. L. McInnes, J. P. Zhao, R. D. Farley, Chem. Eur. J. 2002, 8, 4656–4669.
10.1002/1521-3765(20021018)8:20<4656::AID-CHEM4656>3.0.CO;2-1 CASPubMedWeb of Science®Google Scholar
- 214D. F. Perepichka, M. R. Bryce, C. Pearson, M. C. Petty, E. J. L. McInnes, J. P. Zhao, Angew. Chem. Int. Ed. 2003, 42, 4636–4639.
- 215M. Kivala, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Chem. Commun. 2007, 4731–4733.
- 216P. Gawel, Y.-L. Wu, A. D. Finke, N. Trapp, M. Zalibera, C. Boudon, J.-P. Gisselbrecht, W. B. Schweizer, G. Gescheidt, F. Diederich, Chem. Eur. J. 2015, 21, 6215–6225.
- 217S. K. Keshri, D. Asthana, S. Chorol, Y. Kumar, P. Mukhopadhyay, Chem. Eur. J. 2018, 24, 1821–1832.
- 218T. Shoji, S. Sugiyama, M. Takeuchi, A. Ohta, R. Sekiguchi, S. Ito, T. Yatsu, T. Okujima, M. Yasunami, J. Org. Chem. 2019, 84, 1257–1275.
- 219P. Pakulski, M. Magott, S. Chorazy, M. Sarewicz, M. Srebro-Hooper, D. Tabor, Ł. Łapok, D. Szczepanik, S. Demir, D. Pinkowicz, Chem 2024, 10, 971–997.
- 220L. Wu, W. Zeng, Y. Ishigaki, J. Zhang, H. Bai, T. Harimoto, T. Suzuki, D. Ye, Angew. Chem. Int. Ed. 2022, 61, e202209248.