α-Substituted Phosphonate Analogues of Lysophosphatidic Acid (LPA) Selectively Inhibit Production and Action of LPA
Guowei Jiang
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorYong Xu Dr.
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorYuko Fujiwara Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorTamotsu Tsukahara Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorRyoko Tsukahara Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorJoanna Gajewiak Dr.
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorGabor Tigyi Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorGlenn D. Prestwich Dr.
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorGuowei Jiang
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorYong Xu Dr.
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorYuko Fujiwara Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorTamotsu Tsukahara Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorRyoko Tsukahara Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorJoanna Gajewiak Dr.
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorGabor Tigyi Dr.
Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
Search for more papers by this authorGlenn D. Prestwich Dr.
Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA, Fax: (+1) 801-585-9053
Search for more papers by this authorGraphical Abstract
Metabolically stabilized: We present the total synthesis and pharmacological characterization of α-substituted phosphonate analogues of LPA. The compounds include isoform-selective agonists and antagonists for the LPA GPCRs, and also include potent inhibitors of lysophospholipase D, a key enzyme involved in LPA biosynthesis.
Abstract
Isoform-selective agonists and antagonists of the lysophosphatidic acid (LPA) G-protein-coupled receptors (GPCRs) have important potential applications in cell biology and therapy. LPA GPCRs regulate cancer cell proliferation, invasion, angiogenesis, and biochemical resistance to chemotherapy- and radiotherapy-induced apoptosis. LPA and its analogues are also feedback inhibitors of the enzyme lysophospholipase D (lysoPLD, also known as autotaxin), a central regulator of invasion and metastasis. For cancer therapy, the ideal therapeutic profile would be a metabolically stabilized pan-LPA receptor antagonist that also inhibits lysoPLD. Herein we describe the synthesis of a series of novel α-substituted methylene phosphonate analogues of LPA. Each of these analogues contains a hydrolysis-resistant phosphonate mimic of the labile monophosphate of natural LPA. The pharmacological properties of these phosphono-LPA analogues were characterized in terms of LPA receptor subtype-specific agonist and antagonist activity using Ca2+ mobilization assays in RH7777 and CHO cells expressing the individual LPA GPCRs. In particular, the methylene phosphonate LPA analogue is a selective LPA2 agonist, whereas the corresponding α-hydroxymethylene phosphonate is a selective LPA3 agonist. Most importantly, the α-bromomethylene and α-chloromethylene phosphonates show pan-LPA receptor subtype antagonist activity. The α-bromomethylene phosphonates are the first reported antagonists for the LPA4 GPCR. Each of the α-substituted methylene phosphonates inhibits lysoPLD, with the unsubstituted methylene phosphonate showing the most potent inhibition. Finally, unlike many LPA analogues, none of these compounds activate the intracellular LPA receptor PPARγ.
References
- 1“Lysophosphatidic acid: G-protein signalling and cellular responses”: W. H. Moolenaar, O. Kranenburg, F. R. Postma, G. C. M. Zondag, Curr. Opin. Cell Biol. 1997, 9, 168–173.
- 2“Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells”: D. A. Fishman, Y. Y. Liu, S. M. Ellerbroek, M. S. Stack, Cancer Res. 2001, 61, 3194–3199.
- 3“Lysophosphatidic acid is a bioactive mediator in ovarian cancer”: X. Fang, M. Schummer, M. Mao, S. Yu, F. H. Tabassam, R. Swaby, Y. Hasegawa, J. L. Tanyi, R. LaPushin, A. Eder, R. Jaffe, J. Erickson, G. B. Mills, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2002, 1582, 257–264.
- 4“Unfolding the pathophysiological role of bioactive lysophospholipids”: Y. Xu, Y.-J. Xiao, K. Zhu, L. M. Baudhuin, J. Lu, G. Hong, K.-S. Kim, K. L. Cristina, L. Song, F. S. Williams, P. Elson, M. Markman, J. Belinson, Curr. Drug Targets Immune Endocr. Metab. Disord. 2003, 3, 23–32.
- 5“Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase”: X. Fang, S. Yu, R. LaPushin, Y. Lu, T. Furui, L. Z. Penn, D. Stokoe, J. R. Erickson, R. C. Bast, Jr., G. B. Mills, Biochem. J. 2000, 352, 135–143.
- 6“Critical role of lysophospholipids in the pathophysiology, diagnosis, and management of ovarian cancer”: G. B. Mills, A. Eder, X. Fang, Y. Hasegawa, M. Mao, Y. Lu, J. Tanyi, F. H. Tabassam, J. Wiener, R. Lapushin, S. Yu, J. A. Parrott, T. Compton, W. Tribley, D. Fishman, M. S. Stack, D. Gaudette, R. Jaffe, T. Furui, J. Aoki, J. R. Erickson, Cancer Treat. Res. 2002, 107, 259–283.
- 7“The emerging role of lysophosphatidic acid in cancer”: G. B. Mills, W. H. Moolenaar, Nat. Rev. Cancer 2003, 3, 582–591.
- 8“Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood”: T. Sano, D. Baker, T. Virag, A. Wada, Y. Yatomi, T. Kobayashi, Y. Igarashi, G. Tigyi, J. Biol. Chem. 2002, 277, 21197–21206.
- 9“Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate”: L. A. van Meeteren, P. Ruurs, E. Christodoulou, J. W. Goding, H. Takakusa, K. Kikuchi, A. Perrakis, T. Nagano, W. H. Moolenaar, J. Biol. Chem. 2005, 280, 21155–21161.
- 10“Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1”: K. Hama, J. Aoki, M. Fukaya, Y. Kishi, T. Sakai, R. Suzuki, H. Ohta, T. Yamori, M. Watanabe, J. Chun, H. Arai, J. Biol. Chem. 2004, 279, 17634–17639.
- 11“Identification of genes associated with metastasis of mammary carcinoma in metastatic versus non-metastatic cell lines”: N. Euer, M. Schwirzke, V. Evtimova, H. Burscher, M. Jarsch, D. Tarin, U. H. Weidle, Anticancer Res. 2002, 22, 733–740.
- 12“Lysophosphatidic acid signaling: how a small lipid does big things”: C. Luquain, V. A. Sciorra, A. J. Morris, Trends Biochem. Sci. 2003, 28, 377–383.
- 13“Lysophosphatidic acid production and action: validated targets in cancer?”: M. Umezu-Goto, J. Tanyi, J. Lahad, S. Liu, S. Yu, R. Lapushin, Y. Hasegawa, Y. Lu, R. Trost, T. Bevers, E. Jonasch, K. Aldape, J. Liu, R. D. James, C. G. Ferguson, Y. Xu, G. D. Prestwich, G. B. Mills, J. Cell. Biochem. 2004, 92, 1115–1140.
- 14“Identification of p2y9/GPR23 as a novel G-protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family”: K. Noguchi, S. Ishii, T. Shimizu, J. Biol. Chem. 2003, 278, 25600–25606.
- 15“Lysophosphatidic acid binds to and activates GPR92, a G-protein-coupled receptor highly expressed in gastrointestinal lymphocytes”: K. Kotarsky, A. Boketoft, J. Bristulf, N. E. Nilsson, A. Norberg, S. Hansson, R. Sillard, C. Owman, F. L. M. Leeb-Lundberg, B. Olde, J. Pharmacol. Exp. Ther. 2006, 318, 619–628.
- 16“GPR92 as a new G12/13 and Gq coupled lysophosphatidic acid receptor that increases cAMP: LPA5”: C.-W. Lee, R. Rivera, S. Gardell, A. Dubin, J. Chun, J. Biol. Chem. 2006, 281, 23589–23597.
- 17“Plasma lysophosphatidic acid concentration and ovarian cancer”: D. L. Baker, P. Morrison, B. Miller, C. A. Riely, B. Tolley, A. M. Westermann, J. M. G. Bonfrer, E. Bais, W. H. Moolenaar, G. Tigyi, JAMA J. Am. Med. Assoc. 2002, 287, 3081–3082.
- 18“Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist”: T. M. McIntyre, A. V. Pontsler, A. R. Silva, A. St Hilaire, Y. Xu, J. C. Hinshaw, G. A. Zimmerman, K. Hama, J. Aoki, H. Arai, G. D. Prestwich, Proc. Natl. Acad. Sci. USA 2003, 100, 131–136.
- 19“Lysophosphatidic acid induces neointima formation through PPARγ activation”: C. Zhang, D. L. Baker, S. Yasuda, N. Makarova, L. Balazs, L. R. Johnson, G. K. Marathe, T. M. McIntyre, Y. Xu, G. D. Prestwich, H. S. Byun, R. Bittman, G. Tigyi, J. Exp. Med. 2004, 199, 763–774.
- 20“Synthesis and biological evaluation of phosphonic and thiophosphoric acid derivatives of lysophosphatidic acid”: W. L. Santos, B. H. Heasley, R. Jarosz, K. M. Carter, K. R. Lynch, T. L. Macdonald, Bioorg. Med. Chem. Lett. 2004, 14, 3473–3476.
- 21“Activity of 2-substituted lysophosphatidic acid (LPA) analogues at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist”: C. E. Heise, W. L. Santos, A. M. Schreihofer, B. H. Heasley, Y. V. Mukhin, T. L. Macdonald, K. R. Lynch, Mol. Pharmacol. 2001, 60, 1173–1180.
- 22“Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors”: H. Ohta, K. Sato, N. Murata, A. Damirin, E. Malchinkhuu, J. Kon, T. Kimura, M. Tobo, Y. Yamazaki, T. Watanabe, M. Yagi, M. Sato, R. Suzuki, H. Murooka, T. Sakai, T. Nishitoba, D. S. Im, H. Nochi, K. Tamoto, H. Tomura, F. Okajima, Mol. Pharmacol. 2003, 64, 994–1005.
- 23“Initial structure–activity relationships of lysophosphatidic acid receptor antagonists: discovery of a high-affinity LPA1/LPA3 receptor antagonist”: R. H. Heasley, R. Jarosz, K. R. Lynch, T. L. Macdonald, Bioorg. Med. Chem. Lett. 2004, 14, 2735–2740.
- 24“Fatty alcohol phosphates are subtype-selective agonists and antagonists of lysophosphatidic acid receptors”: T. Virag, D. B. Elrod, K. Liliom, V. M. Sardar, A. L. Parrill, K. Yokoyama, G. Durgam, W. Deng, D. D. Miller, G. Tigyi, Mol. Pharmacol. 2003, 63, 1032–1042.
- 25“Enantioselective responses to OMPT, a phosphorothioate analog of lysophosphatidic acid with LPA3 receptor-selective agonist activity”: L. Qian, Y. Xu, Y. Hasegawa, J. Aoki, G. B. Mills, G. D. Prestwich, J. Med. Chem. 2003, 46, 5575–5578.
- 26“Synthesis of α-fluorinated phosphonates from α-fluorovinylphosphonates: a new route to analogues of lysophosphatidic acid”: Y. Xu, L. Qian, G. D. Prestwich, Org. Lett. 2003, 5, 2267–2270.
- 27“Structure–activity relationships of fluorinated lysophosphatidic acid analogues”: Y. Xu, J. Aoki, K. Shimizu, M. Umezu-Goto, K. Hama, Y. Takanezawa, S. Yu, G. B. Mills, H. Arai, L. Qian, G. D. Prestwich, J. Med. Chem. 2005, 48, 3319–3327.
- 28“Identifying specific conformations by using a carbohydrate scaffold: discovery of subtype-selective LPA-receptor agonists and an antagonist”: Y. Tamaruya, M. Suzuki, G. Kamura, M. Kanai, K. Hama, K. Shimizu, J. Aoki, H. Arai, M. Shibasaki, Angew. Chem. 2004, 116, 2894–2897;
- 29“Synthesis, structure–activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARγ and inhibitors of autotaxin”: G. G. Durgam, T. Virag, M. D. Walker, R. Tsukahara, S. Yasuda, K. Liliom, L. A. van Meeteren, W. H. Moolenaar, N. Wilke, W. Siess, G. Tigyi, D. D. Miller, J. Med. Chem. 2005, 48, 4919–4930.
- 30“New metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists, and enzyme inhibitors”: G. D. Prestwich, Y. Xu, L. Qian, J. Gajewiak, G. Jiang, Biochem. Soc. Trans. 2005, 33, 1357–1361.
- 31“Molecular mechanisms of lysophosphatidic acid action”: G. Tigyi, A. L. Parrill, Prog. Lipid Res. 2003, 42, 498–526.
- 32“Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor”: Y. Hasegawa, J. R. Erickson, G. J. Goddard, S. Yu, S. Liu, K. W. Cheng, A. Eder, K. Bandoh, J. Aoki, R. Jarosz, A. D. Schrier, K. R. Lynch, G. B. Mills, X. Fang, J. Biol. Chem. 2003, 278, 11962–11969.
- 33“Phosphonates as analogues of biological phosphates”: G. M. Blackburn, Chem. Ind. 1981, 5, 134–138.
- 34“Phosphonates as analogues of natural phosphates”: R. Engel, Chem. Rev. 1977, 77, 349–367.
- 35“Phosphonate lipid tubules. 1”: B. N. Thomas, R. C. Corcoran, C. L. Cotant, C. M. Lindemann, J. E. Kirsch, P. J. Persichini, J. Am. Chem. Soc. 1998, 120, 12178–12186.
- 36“Synthesis and applications of C2-symmetric guanidine bases”: M. T. Allingham, A. Howard-Jones, P. J. Murphy, D. A. Thomasa, P. W. R. Caulkett, Tetrahedron Lett. 2003, 44, 8677–8680.
- 37“A convenient synthesis of (2R)-1-amino-1-deoxy-1-phosphinylglycerols”: T. Hanaya, A. Miyoshi, A. Noguchi, H. Kawamoto, M. A. Armour, A. M. Hogg, H. Yamamoto, Bull. Chem. Soc. Jpn. 1990, 63, 3590–3594.
- 38“Addition reactions of esters of phosphorus(III) acids with unsaturated systems”: A. N. Pudovik, I. V. Konovalova, Synthesis 1979, 81–96.
- 39“Preparation of diethyl 1-bromoalkylphosphonates”: T. Gajda, Phosphorus Sulfur Silicon Relat. Elem. 1990, 53, 327–331.
- 40“A convenient synthesis of diethyl 1-chloroalkylphosphonates”: T. Gajda, Synthesis 1990, 717–718.
- 41“Synthesis of primary α-chlorophosphines by a chemoselective reduction of α-chlorophosphonates”: J. L. Cabioch, B. Pellerin, J. M. Denis, Phosphorus Sulfur Silicon Relat. Elem. 1989, 44, 27–32.
- 42“Reaction of dimethyl 1-hydroxyalkylphosphonates with some chlorides”: M. Yamashita, T. Morizane, K. Fujita, K. Nakatani, S. Inokawa, Bull. Chem. Soc. Jpn. 1987, 60, 812–814.
- 43“Synthesis of an optically active C1-symmetric Al(salalen) complex and its application to the catalytic hydrophosphonylation of aldehydes”: B. Saito, T. Katsuki, Angew. Chem. 2005, 117, 4676–4678;
- 44“Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors”: D. J. Fischer, N. Nusser, T. Virag, K. Yokoyama, D. A. Wang, D. L. Baker, D. Bautista, A. L. Parrill, G. Tigyi, Mol. Pharmacol. 2001, 60, 776–784.
- 45“Different residues mediate recognition of 1-O-oleyllysohosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor gamma”: T. Tsukahara, R. Tsukahara, S. Yasuda, N. Makarova, W. J. Valentine, P. Allison, H. Yuan, D. L. Baker, Z. Li, R. Bittman, A. L. Parrill, G. Tigyi, J. Biol. Chem. 2005, 281, 3398–3407.
- 46“Synthesis of difluoromethyl substituted lysophosphatidic acid analogues”: Y. Xu, L. Qian, A. V. Pontsler, T. M. McIntyre, G. D. Prestwich, Tetrahedron 2004, 60, 43–49.
- 47“Serum lysophosphatidic acid is produced through diverse phospholipase pathways”: J. Aoki, A. Taira, Y. Takanezawa, Y. Kishi, K. Hama, T. Kishimoto, K. Mizuno, K. Saku, R. Taguchi, H. Arai, J. Biol. Chem. 2002, 277, 48737–48744.
- 48“Lysophosphatidic acid induces threonine phosphorylation of Tiam1 in Swiss 3T3 fibroblasts via activation of protein kinase C”: I. N. Fleming, C. M. Elliott, J. G. Collard, J. H. Exton, J. Biol. Chem. 1997, 272, 33105–33110.
- 49“Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation”: A. Gschwind, N. Prenzel, A. Ullrich, Cancer Res. 2002, 62, 6329–6336.
- 50“Fluorogenic phospholipid substrate to detect lysophospholipase D/autotaxin activity”: C. G. Ferguson, C. S. Bigman, R. D. Richardson, L. A. van Meeteren, W. H. Moolenaar, G. D. Prestwich, Org. Lett. 2006, 8, 2023–2026.
- 51“Functional lipidomics: Lysophosphatidic acid as a target for molecular diagnosis and therapy of ovarian cancer”: J. Tanyi, D. Croetzer, J. Wolf, S. Yu, Y. Hasegawa, J. Lahad, K. W. Cheng, M. Umezu-Goto, G. D. Prestwich, A. J. Morris, R. A. Newman, E. A. Felix, R. Lapis, G. B. Mills in Functional Lipidomics (Eds.: ), CRC Press/Taylor & Francis, New York, 2006, pp. 101–123.
- 52“Carba analogues of cyclic phosphatidic acid are selective inhibitors of autotaxin and cancer cell invasion and metastasis”: D. Baker, Y. Fujiwara, K. R. Pigg, R. Tsukahara, S. Kobayashi, H. Murofushi, A. Uchiyama, K. Murakami-Murofushi, E. Koh, R. W. Bandle, H. S. Byun, R. Bittman, D. Fan, M. Murph, G. B. Mills, G. Tigyi, J. Biol. Chem. 2006, 281, 22786–22793.
- 53“Molecular basis for lysophosphatidic acid receptor antagonist selectivity”: V. M. Sardar, D. L. Bautista, D. J. Fischer, K. Yokoyama, N. Nusser, T. Virag, D. Wang, D. L. Baker, G. Tigyi, A. L. Parrill, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2002, 1582, 309–317.