Structure, Function, and Inhibition of Staphylococcus aureus Heptaprenyl Diphosphate Synthase
Janish Desai
Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801 USA
Search for more papers by this authorDr. Yi-Liang Liu
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA
Search for more papers by this authorHongli Wei
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 PRC
Search for more papers by this authorDr. Weidong Liu
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 PRC
Search for more papers by this authorDr. Tzu-Ping Ko
Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Taipei, 11529 ROC
Search for more papers by this authorProf. Rey-Ting Guo
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 PRC
Search for more papers by this authorCorresponding Author
Prof. Eric Oldfield
Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801 USA
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA
Search for more papers by this authorJanish Desai
Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801 USA
Search for more papers by this authorDr. Yi-Liang Liu
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA
Search for more papers by this authorHongli Wei
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 PRC
Search for more papers by this authorDr. Weidong Liu
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 PRC
Search for more papers by this authorDr. Tzu-Ping Ko
Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Taipei, 11529 ROC
Search for more papers by this authorProf. Rey-Ting Guo
Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 PRC
Search for more papers by this authorCorresponding Author
Prof. Eric Oldfield
Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801 USA
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, IL, 61801 USA
Search for more papers by this authorGraphical Abstract
New drug target: Staphylococcus aureus heptaprenyl diphosphate synthase (HepPPS), involved in menaquinone biosynthesis, functions as a heterodimer and is inhibited by bisphosphonates (IC50=0.83 μm), which also inhibit S. aureus cell growth, an effect that is rescued by menaquinone. HepPPS is also partially inhibited by its substrates FPP as well as IPP, most likely due to disruption of the heterodimeric complex structure.
Abstract
We report the first structure of heptaprenyl diphosphate synthase from Staphylococcus aureus (SaHepPPS), together with an investigation of its mechanism of action and inhibition. The protein is involved in the formation of menaquinone, a key electron transporter in many bacteria, including pathogens. SaHepPPS consists of a “catalytic ” subunit (SaHepPPS-2) having two “DDXXD” motifs and a “regulatory” subunit (SaHepPPS-1) that lacks these motifs. High concentrations of the substrates, isopentenyl diphosphate and farnesyl diphosphate, inhibit the enzyme, which is also potently inhibited by bisphosphonates. The most active inhibitors (Ki∼200 nm) were N-alkyl analogues of zoledronate containing ∼C6 alkyl side chains. They were modestly active against S. aureus cell growth, and growth inhibition was partially “rescued” by the addition of menaquinone-7. Because SaHepPPS is essential for S. aureus cell growth, its structure is of interest in the context of the development of menaquinone biosynthesis inhibitors as potential antibiotic leads.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cmdc201600311-sup-0001-misc_information.pdf3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Oldfield, Acc. Chem. Res. 2010, 43, 1216–1226.
- 2E. Oldfield, F. Y. Lin, Angew. Chem. Int. Ed. 2012, 51, 1124–1137;
Angew. Chem. 2012, 124, 1150–1163.
10.1002/ange.201103110 Google Scholar
- 3
- 3aW. Zhu, Y. Zhang, W. Sinko, M. E. Hensler, J. Olson, K. J. Molohon, S. Lindert, R. Cao, K. Li, K. Wang, Proc. Natl. Acad. Sci. USA 2013, 110, 123–128;
- 3bN. Shang, Q. Li, T. P. Ko, H. S. Chan, J. Li, Y. Zheng, C. H. Huang, F. Ren, C. C. Chen, Z. Zhu, PLoS Pathog. 2014, 10, e 1004114;
- 3cH. Hamamoto, M. Urai, K. Ishii, J. Yasukawa, A. Paudel, M. Murai, T. Kaji, T. Kuranaga, K. Hamase, T. Katsu, J. Su, T. Adachi, R. Uchida, H. Tomoda, M. Yamada, M. Souma, H. Kurihara, M. Inoue, K. Sekimizu, Nat. Chem. Biol. 2015, 11, 127–133.
- 4R. Bentley, R. Meganathan, Microbiol. Rev. 1982, 46, 241–280.
- 5J. A. Gerlt, J. T. Bouvier, D. B. Davidson, H. J. Imker, B. Sadkhin, D. R. Slater, K. L. Whalen, Biochim. Biophys. Acta Proteins Proteomics 2015, 1854, 1019–1037.
- 6M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T. L. Madden, Nucleic Acids Res. 2008, 36, W 5–9.
- 7E. Roberts, J. Eargle, D. Wright, Z. Luthey-Schulten, BMC Bioinf. 2006, 7, 382.
- 8E. Krissinel, K. Henrick, Acta Crystallogr. Sect. D 2004, 60, 2256–2268.
- 9D. Sasaki, M. Fujihashi, N. Okuyama, Y. Kobayashi, M. Noike, T. Koyama, K. Miki, J. Biol. Chem. 2011, 286, 3729–3740.
- 10I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2001, 29, 228–229.
- 11P. O′Donoghue, Z. Luthey-Schulten, Microbiol. Mol. Biol. Rev. 2003, 67, 550–573.
- 12M. R. Webb, Proc. Natl. Acad. Sci. USA 1992, 89, 4884–4887.
- 13Y. W. Zhang, X. Y. Li, T. Toyama, Biochemistry 2000, 39, 12717–12722.
- 14R. A. Copeland in Enzymes, Wiley-VCH, Weinheim, 2000, pp. 137–141.
10.1002/0471220639 Google Scholar
- 15T. Suzuki, Y. W. Zhang, T. Toyama, D. Y. Sasaki, K. Kurihara, J. Am. Chem. Soc. 2006, 128, 15209–15214.
- 16
- 16aY. H. Zhang, W. Zhu, Y. L. Liu, H. Wang, K. Wang, K. Li, J. H. No, L. Ayong, A. Gulati, R. Pang, ACS Med. Chem. Lett. 2013, 4, 423–427;
- 16bY. Zhang, R. Cao, F. Yin, M. P. Hudock, R. T. Guo, K. Krysiak, S. Mukherjee, Y. G. Gao, H. Robinson, Y. Song, J. Am. Chem. Soc. 2009, 131, 5153–5162;
- 16cC. K. M. Chen, M. P. Hudock, Y. H. Zhang, R. T. Guo, R. Cao, J. H. No, P. H. Liang, T. P. Ko, T. H. Chang, S. C. Chang, Y. Song, J. Axelson, A. Kumar, A. H.-J. Wang, E, Oldfield, J. Med. Chem. 2008, 51, 5594–5607;
- 16dY. Zhang, R. Cao, F. Yin, F. Lin, H. Wang, K. Krysiak, J. H. No, D. Mukkamala, K. Houlihan, J. Li, C. Morita, E. Oldfield, Angew. Chem. Int. Ed. 2010, 49, 1136–1138;
Angew. Chem. 2010, 122, 1154–1156;
10.1002/ange.200905933 Google Scholar
- 16eF. Y. Lin, Y. Zhang, M. Hensler, Y. L. Liu, O. A. Chow, W. Zhu, K. Wang, R. Pang, W. Thienphrapa, V. Nizet, E. Oldfield, ChemMedChem 2012, 7, 561–564.
- 17R. G. Russell, Ann. N. Y. Acad. Sci. 2006, 1068, 367–401.
- 18J. H. No, F. de Macedo Dessin, Y. Zhang, Y. L. Liu, W. Zhu, X. Feng, J. A. Yoo, E. Lee, K. Wang, R. Hui, Proc. Natl. Acad. Sci. USA 2012, 109, 4058–4063.
- 19J. D. Artz, A. K. Wernimont, J. E. Dunford, M. Schapira, A. Dong, Y. Zhao, J. Lew, R. G. Russell, F. H. Ebetino, U. Oppermann, R. Hui, J. Biol. Chem. 2011, 286, 3315–3322.
- 20M. A. Farha, T. L. Czarny, C. L. Myers, L. J. Worrall, S. French, D. G. Conrady, Y. Wang, E. Oldfield, N. C. Strynadka, E. D. Brown, Proc. Natl. Acad. Sci. USA 2015, 112, 11048–11053.
- 21
- 21aG. M. Eliopolous, R. C. Moellering in Antibiotics in Laboratory Medicine (Ed. ), Williams & Wilkins Publishing Co., Philadelphia, 1998, pp. 330–396;
- 21bP. K. Singh, B. F. Tack, P. B. McCray, M. J. Welsh, Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L799–L805.
- 22European Committee for Antimicrobial Susceptibility Testing (EUCAST), Clin. Microbiol. Infect. 2000, 6, 503–508.
- 23M. C. Berenbaum, Pharmacol. Rev. 1989, 41, 93–141.
- 24Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307–326.
- 25A. T. Brünger, Acta Crystallogr. Sect. D 1993, 49, 24–36.
- 26P. Emsley, K. Cowtan, Acta Crystallogr. Sect. D 2004, 60, 2126–2132.
- 27O. Y. Borbulevych, J. A. Plumley, R. I. Martin, K. M. Merz Jr., L. M. Westerhoff, Acta Crystallogr. Sect. D 2014, 70, 1233–1247.
- 28G. N. Murshudov, P. Skubak, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long, A. A. Vagin, Acta Crystallogr. Sect. D 2011, 67, 355–367.
- 29A. T. Brünger, P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, Acta Crystallogr. Sect. D 1998, 54, 905–921.
- 30K. Li, L. Schurig-Briccio, X. Feng, A. Upadhyay, V. Pujari, B. Lechartier, F. L. Fontes, H. Yang, G. Rao, W. Zhu, J. Med. Chem. 2014, 57, 3126–3139.
- 31L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, M. J. E. Sternberg, Nat. Protoc. 2015, 10, 845–858 (cited in Supporting Information).