Harnessing the Maltodextrin Transport Mechanism for Targeted Bacterial Imaging: Structural Requirements for Improved in vivo Stability in Tracer Design
Alexander Axer
Institute for Organic Chemistry, WWU Münster, Corrensstrasse 40, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorDr. Sven Hermann
European Institute for Molecular Imaging, WWU Münster, Waldeyerstrasse 15, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorDr. Gerald Kehr
Institute for Organic Chemistry, WWU Münster, Corrensstrasse 40, 48149 Münster, Germany
Search for more papers by this authorDavid Clases
Institute for Inorganic and Analytical Chemistry, WWU Münster, Corrensstrasse 30, 48149 Münster, Germany
Search for more papers by this authorProf. Dr. Uwe Karst
Institute for Inorganic and Analytical Chemistry, WWU Münster, Corrensstrasse 30, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorLena Fischer-Riepe
Institute for Immunology, WWU Münster, Röntgenstrasse 21, 48149 Münster, Germany
Search for more papers by this authorProf. Dr. Johannes Roth
Institute for Immunology, WWU Münster, Röntgenstrasse 21, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorDr. Manfred Fobker
Center of Laboratory Medicine, WWU Münster, Albert Schweitzer Campus 1, 48149 Münster, Germany
Search for more papers by this authorProf. Dr. Michael Schäfers
European Institute for Molecular Imaging, WWU Münster, Waldeyerstrasse 15, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
Department of Nuclear Medicine, University Hospital Münster, Albert Schweitzer Campus 1, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Ryan Gilmour
Institute for Organic Chemistry, WWU Münster, Corrensstrasse 40, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorCorresponding Author
Dr. Andreas Faust
European Institute for Molecular Imaging, WWU Münster, Waldeyerstrasse 15, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorAlexander Axer
Institute for Organic Chemistry, WWU Münster, Corrensstrasse 40, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorDr. Sven Hermann
European Institute for Molecular Imaging, WWU Münster, Waldeyerstrasse 15, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorDr. Gerald Kehr
Institute for Organic Chemistry, WWU Münster, Corrensstrasse 40, 48149 Münster, Germany
Search for more papers by this authorDavid Clases
Institute for Inorganic and Analytical Chemistry, WWU Münster, Corrensstrasse 30, 48149 Münster, Germany
Search for more papers by this authorProf. Dr. Uwe Karst
Institute for Inorganic and Analytical Chemistry, WWU Münster, Corrensstrasse 30, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorLena Fischer-Riepe
Institute for Immunology, WWU Münster, Röntgenstrasse 21, 48149 Münster, Germany
Search for more papers by this authorProf. Dr. Johannes Roth
Institute for Immunology, WWU Münster, Röntgenstrasse 21, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorDr. Manfred Fobker
Center of Laboratory Medicine, WWU Münster, Albert Schweitzer Campus 1, 48149 Münster, Germany
Search for more papers by this authorProf. Dr. Michael Schäfers
European Institute for Molecular Imaging, WWU Münster, Waldeyerstrasse 15, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
Department of Nuclear Medicine, University Hospital Münster, Albert Schweitzer Campus 1, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Ryan Gilmour
Institute for Organic Chemistry, WWU Münster, Corrensstrasse 40, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorCorresponding Author
Dr. Andreas Faust
European Institute for Molecular Imaging, WWU Münster, Waldeyerstrasse 15, 48149 Münster, Germany
Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
DFG EXC 1003 Cluster of Excellence “Cells in Motion”, WWU Münster, Münster, Germany
Search for more papers by this authorGraphical Abstract
Hitting the spot: Harnessing bacteria-specific metabolic pathways, such as the maltodextrin transport mechanism, may allow specific localization and imaging. This requires intrabacterial tracer accumulation and high serum stability of the tracer molecule. The effectiveness and serum stability of radiolabeled maltodextrin tracers of varying chain lengths with free nonreducing/reducing ends are evaluated.
Abstract
Diagnosis and localization of bacterial infections remains a significant clinical challenge. Harnessing bacteria-specific metabolic pathways, such as the maltodextrin transport mechanism, may allow specific localization and imaging of small or hidden colonies. This requires that the intrabacterial tracer accumulation provided by the transporter is matched by high serum stability of the tracer molecule. Herein, radiolabeled maltodextrins of varying chain lengths and with free nonreducing/reducing ends are reported and their behavior against starch-degrading enzymes in the blood, which compromise their serum stability, is evaluated. Successful single-photon emission computed tomography (SPECT) imaging is shown in a footpad infection model in vivo by using the newly developed model tracer, [99mTc]MB1143, and the signal is compared with that of 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) as a nonbacterial specific marker for inflammation. Although the [99mTc]MB1143 imaging signal is highly specific, it is low, most probably due to insufficient serum stability of the tracer. A series of stability tests with different 18F-labeled maltodextrins finally yielded clear structural guidelines regarding substitution patterns and chain lengths of maltodextrin-based tracers for nuclear imaging of bacterial infections.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cmdc201700543-sup-0001-misc_information.pdf5.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Auletta, F. Galli, C. Lauri, D. Martinelli, I. Santino, A. Signore, Clin. Transl. Imaging 2016, 4, 229–252, and references therein.
- 2N. K. Archer, M. J. Mazaitis, J. W. Costerton, J. G. Leid, M. E. Powers, M. E. Shirtliff, Virulence 2011, 2, 445–459.
- 3J. W. Costerton, P. S. Stewart, E. P. Greenberg, Science 1999, 284, 1318–1322.
- 4M. M. Kiamco, E. Atci, Q. F. Khan, A. Mohamed, R. S. Renslow, N. Abu-Lail, B. A. Fransson, D. R. Call, H. Beyenal, Biotechnol. Bioeng. 2015, 112, 2562–2570.
- 5S. T. Sultana, D. R. Call, H. Beyenal, Sci. Rep. 2016, 6, 36003.
- 6A. Gillissen, M. Paparoupa, Clin. Respir. J. 2015, 9, 257–269.
- 7K. S. Sfanos, W. B. Isaacs, A. M. De Marzo, Am. J. Clin. Exp. Urol. 2013, 1, 3–11.
- 8R. Dippel, W. Boos, J. Bacteriol. 2005, 187, 8322–8331.
- 9X. Ning, S. Lee, Z. Wang, D. Kim, B. Stubblefield, E. Gilbert, N. Murthy, Nat. Mater. 2011, 10, 602–607.
- 10X. Ning, W. Seo, S. Lee, K. Takemiya, M. Rafi, X. Feng, D. Weiss, X. Wang, L. Williams, V. M. Camp, M. Eugene, W. R. Taylor, M. Goodman, N. Murthy, Angew. Chem. Int. Ed. 2014, 53, 14096–14101;
Angew. Chem. 2014, 126, 14320–14325.
10.1002/ange.201408533 Google Scholar
- 11A. Galstyan, D. Block, S. Niemann, M. Grüner, S. Abbruzzetti, M. Oneto, C. G. Daniliuc, S. Hermann, C. Viappiani, M. Schäfers, B. Löffler, C. A. Strassert, A. Faust, Chem. Eur. J. 2016, 22, 5243–5252.
- 12W. Boos, H. Shuman, Microbiol. Mol. Biol. Rev. 1998, 62, 204–229.
- 13M. L. Oldham, S. Chen, J. Chen, Proc. Natl. Acad. Sci. USA 2013, 110, 18132–18137.
- 14S. A. Shelburne III, H. Fang, N. Okorafor, P. Sumby, I. Sitkiewicz, D. Keith, P. Patel, C. Austin, E. A. Graviss, J. M. Musser, D. C. Chow, J. Bacteriol. 2007, 189, 2610–2617.
10.1128/JB.01539-06 Google Scholar
- 15G. Gowrishankar, J. Hardy, M. Wardak, M. Namavari, R. Reeves, E. Neofytou, A. Srinivasan, J. Wu, C. Contag, S. Gambhir, J. Nucl. Med. 2017, 58, 1679–1684.
- 16
- 16aW. B. Salt, S. Schenker, Medicine 1976, 55, 269–281;
- 16bW. M. Steinberg, S. S. Goldstein, N. D. Davies, J. Shamma'a, K. Anderson, Ann. Intern. Med. 1985, 102, 576–580;
- 16cN. W. Tietz, W. Y. Huang, D. F. Rauh, D. F. Shuey, Clin. Chem. 1986, 32, 301–307.
- 17N. Nippe, G. Varga, D. Holzinger, B. Löffler, E. Medina, K. Becker, J. Roth, J. M. Ehrchen, C. Sunderkötter, J. Invest. Dermatol. 2011, 131, 125–132.
- 18A. Faust, B. Waschkau, J. Waldeck, C. Holtke, H. J. Breyholz, S. Wagner, K. Kopka, O. Schober, W. Heindel, M. Schafers, C. Bremer, Bioconjugate Chem. 2009, 20, 904–912.
- 19L. N. Goswami, Z. H. Houston, S. J. Sarma, S. S. Jalisatgi, M. F. Hawthorne, Org. Biomol. Chem. 2013, 11, 1116–1126.
- 20N. Laurent, D. Lafont, F. Dumoulin, P. Boullanger, G. Mackenzie, P. H. Kouwer, J. W. Goodby, J. Am. Chem. Soc. 2003, 125, 15499–15506.
- 21P. Tomasik, D. Horton, Adv. Carbohydr. Chem. Biochem. 2012, 68, 59–436.
- 22D. Clases, M. Birka, M. Sperling, A. Faust, U. Karst, J. Trace Elem. Med. Biol. 2017, 40, 97–103.
- 23S. Yamagishi, T. Matsui, S. Ueda, K. Fukami, S. Okuda, Curr. Drug Metab. 2009, 10, 159–163.
- 24B. D. Ventura, N. Sakač, R. Funari, R. Velotta, Talanta 2017, 174, 52–58.
- 25K. Myrbaeck, E. Willstaedt, Ark. Kemi 1954, 7, 403–415.
- 26K. Myrbaeck, E. Willstaedt, Ark. Kemi 1954, 7, 443–454.
- 27K. Svanborg, K. Myrbaeck, Ark. Kemi 1953, 6, 113–131.
- 28M. S. Møller, B. Svensson, Curr. Opin. Struct. Biol. 2016, 40, 33–42.
- 29M. Glaser, E. Arstad, Bioconjugate Chem. 2007, 18, 989–993.
- 30J. D. Kruse-Jarres, C. Kaiser, J. C. Hafkenscheid, W. Hohenwallner, W. Stein, J. Bohner, G. Klein, W. Poppe, E. Rauscher, J. Clin. Chem. Clin. Biochem. 1989, 27, 103–113.
- 31J. E. Mörmann, H. R. Mühlemann, Caries Res. 1981, 15, 166–175.
- 32A. Henrich, N. Kuhlmann, A. W. Eck, R. Krämer, G. M. Seibold, J. Bacteriol. 2013, 195, 2573–2584.
- 33W. Junge, W. Wortmann, B. Wilke, J. Waldenström, A. Kurrle-Weittenhiller, J. Finke, G. Klein, Clin. Biochem. 2001, 34, 607–615.
- 34P. Coma, L. Gomez-Chacon, B. Garcia-Serrano, E. Fernandez, M. A. Ortiz-Apodaca, Clin. Chem. 1992, 38, 223–226.