Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria
Dr. Kyla M. Frohlich
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Regeneron Inc., Rensselaer, NY, USA
Search for more papers by this authorSpencer F. Weintraub
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: New York Medical College, Valhalla, NY, USA
Search for more papers by this authorJaneen T. Bell
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Albany Medical College, Center for Physician Assistant Studies, Albany, NY, USA
Search for more papers by this authorDr. Gabrielle C. Todd
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorVille Y. P. Väre
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorRyan Schneider
Department of Biomedical Sciences, School of Public Health, University at Albany – State University of New York, P.O. Box 22002, Albany, NY, 12201 USA
Search for more papers by this authorZachary A. Kloos
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002 USA
Current address: Molecular, Cellular and Developmental Biology, Yale University, West Haven, CT, USA
Search for more papers by this authorDr. Ebot S. Tabe
Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002 USA
Current address: Albany College of Pharmacy and Health Sciences, Albany, NY, USA
Search for more papers by this authorWilliam A. Cantara
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
Search for more papers by this authorDr. Caren J. Stark
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorUrenna J. Onwuanaibe
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorDr. Bryan C. Duffy
Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203 USA
Current address: New York State Department of Health, Albany, NY, USA
Search for more papers by this authorDr. Maria Basanta-Sanchez
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Waters Corporation, Pleasanton, CA, USA
Search for more papers by this authorDr. Douglas B. Kitchen
Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203 USA
Search for more papers by this authorDr. Kathleen A. McDonough
Department of Biomedical Sciences, School of Public Health, University at Albany – State University of New York, P.O. Box 22002, Albany, NY, 12201 USA
Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002 USA
Search for more papers by this authorCorresponding Author
Dr. Paul F. Agris
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Duke University, Medical School, Durham, NC, USA
Search for more papers by this authorDr. Kyla M. Frohlich
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Regeneron Inc., Rensselaer, NY, USA
Search for more papers by this authorSpencer F. Weintraub
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: New York Medical College, Valhalla, NY, USA
Search for more papers by this authorJaneen T. Bell
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Albany Medical College, Center for Physician Assistant Studies, Albany, NY, USA
Search for more papers by this authorDr. Gabrielle C. Todd
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorVille Y. P. Väre
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorRyan Schneider
Department of Biomedical Sciences, School of Public Health, University at Albany – State University of New York, P.O. Box 22002, Albany, NY, 12201 USA
Search for more papers by this authorZachary A. Kloos
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002 USA
Current address: Molecular, Cellular and Developmental Biology, Yale University, West Haven, CT, USA
Search for more papers by this authorDr. Ebot S. Tabe
Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002 USA
Current address: Albany College of Pharmacy and Health Sciences, Albany, NY, USA
Search for more papers by this authorWilliam A. Cantara
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
Search for more papers by this authorDr. Caren J. Stark
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorUrenna J. Onwuanaibe
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Search for more papers by this authorDr. Bryan C. Duffy
Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203 USA
Current address: New York State Department of Health, Albany, NY, USA
Search for more papers by this authorDr. Maria Basanta-Sanchez
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Waters Corporation, Pleasanton, CA, USA
Search for more papers by this authorDr. Douglas B. Kitchen
Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203 USA
Search for more papers by this authorDr. Kathleen A. McDonough
Department of Biomedical Sciences, School of Public Health, University at Albany – State University of New York, P.O. Box 22002, Albany, NY, 12201 USA
Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002 USA
Search for more papers by this authorCorresponding Author
Dr. Paul F. Agris
The RNA Institute and the Department of Biological Sciences, University at Albany – State University of New York, 1400 Washington Avenue, Albany, NY, 12222 USA
Current address: Duke University, Medical School, Durham, NC, USA
Search for more papers by this authorGraphical Abstract
The Achilles′ heel of bacteria: An RNA function has been explored as a target for small-molecule intervention in Gram-positive bacterial infections, that foils the emergence of drug resistance. A small molecule (light blue) selected in silico disrupts tRNA-dependent control of transcription by binding to the nascent mRNA 5′-untranslated region (olive, RNA stem; purple, RNA loop) at a “codon” (red) complementary to the tRNA′s anticodon binding site. The compound thwarts the emergence of drug resistance.
Abstract
The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5′-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5′UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16–64 μg mL−1). Resistance developed at an extremely low mutational frequency (1.21×10−10). At 4 μg mL−1, the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd≈24 μm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cmdc201800744-sup-0001-misc_information.pdf523.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Antibiotic/Antimicrobial Resistance Threats in the United States, 2013, US Centers for Disease Control and Prevention (CDC): http://www.cdc.gov/drugresistance/threat-report-2013 (accessed September 16, 2013).
- 2M. E. de Kraker, P. G. Davey, H. Grundmann, BURDEN Study Group, PLoS Med. 2011, 8, e1001104.
- 3A. M. Krachler, K. Orth, Virulence 2013, 4, 284–294.
- 4A. P. Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G. Giske, S. Harbarth, J. F. Hindler, G. Kahlmeter, B. Olsson-Liljequist, D. L. Paterson, Rice, J. Stelling, M. J. Struelens, A. Vatopoulos, J. T. Weber, D. L. Monnet, Clin. Microbiol. Infect. 2012, 18, 268–281.
- 5N. K. Peters, D. M. Dixon, S. M. Holland, A. S. Fauci, J. Infect. Dis. 2008, 197, 1087–1093.
- 6J. H. Song, P. R. Hsueh, D. R. Chung, K. S. Ko, C. I. Kang, K. R. Peck, J. S. Yeom, S. W. Kim, H. H. Chang, Y. S. Kim, S. I. Jung, J. S. Son, T. M. So, M. K. Lalitha, Y. Yang, S. G. Huang, H. Wang, Q. Lu, C. C. Carlos, J. A. Perera, C. H. Chiu, J. W. Liu, A. Chongthaleong, V. Thamlikitkul, P. H. Van, ANSORP Study Group, J. Antimicrob. Chemother. 2011, 66, 1061–1069.
- 7S. T. Chancey, D. Zähner, D. S. Stephens, Future Microbiol. 2012, 7, 959–978.
- 8J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 2010, 74, 417–433.
- 9B. Felden, V. Cattoir, Antimicrob. Agents Chemother. 2018, 62, e 02503–e02517.
- 10V. Dewan, J. Reader, K. M. Forsyth, Top. Curr. Chem. 2014, 344, 293–329.
- 11F. J. Grundy, T. M. Henkin, J. Mol. Biol. 1994, 235, 798–804.
- 12F. J. Grundy, T. M. Henkin, Front. Biosci. 2003, 8, d 20–d31.
- 13L. S. McCoy, Y. Xie, Y. Tor, Wiley Interdiscip. Rev. RNA 2011, 2, 209–232.
- 14A. Robinson, R. J. Causer, N. E. Dixon, Curr. Drug Targets 2012, 13, 352–372.
- 15S. D. Lahiri, A. Kutschke, K. McCormack, R. A. Alm, Antimicrob. Agents Chemother. 2015, 59, 5278–5287.
- 16F. J. Grundy, T. M. Henkin, Crit. Rev. Biochem. Mol. Biol. 2006, 41, 329–338.
- 17K. F. Blount, R. R. Breaker, Nat. Biotechnol. 2006, 24, 1558–1564.
- 18K. E. Deigan, A. R. Ferre-D′Amare, Acc. Chem. Res. 2011, 44, 1329–1338.
- 19J. A. Howe, H. Wang, T. O. Fischmann, C. J. Balibar, L. Xiao, A. M. Galgoci, J. C. Malinverni, T. Mayhood, A. Villafania, A. Nahvi, N. Murgolo, C. M. Barbieri, P. A. Mann, D. Carr, E. Xia, P. Zuck, D. Riley, R. E. Painter, S. S. Walker, B. Sherborne, R. de Jesus, W. Pan, M. A. Plotkin, J. Wu, D. Rindgen, J. Cummings, C. G. Garlisi, R. Zhang, P. R. Sheth, C. J. Gill, H. Tang, T. Roemer, Nature 2015, 526, 672–677.
- 20A. Gutiérrez-Preciado, T. M. Henkin, F. J. Grundy, C. Yanofsky, E. Merino, Microbiol. Mol. Biol. Rev. 2009, 73, 36–61.
- 21A. G. Vitreschak, A. A. Mironov, V. A. Lyubetsky, M. S. Gelfand, RNA 2008, 14, 717–735.
- 22N. J. Green, F. J. Grundy, T. M. Henkin, FEBS Lett. 2010, 584, 318–324.
- 23A. M. Smith, R. T. Fuchs, F. J. Grundy, T. M. Henkin, RNA Biol. 2010, 7, 104–110.
- 24A. R. Nelson, T. M. Henkin, P. F. Agris, RNA 2006, 12, 1254–1261.
- 25F. J. Grundy, T. M. Henkin, Cell 1993, 74, 475–482.
- 26T. M. Henkin, Genes Dev. 2008, 22, 3383–3390.
- 27T. M. Henkin, B. L. Glass, F. J. Grundy, J. Bacteriol. 1992, 174, 1299–1306.
- 28M. S. Gerdeman, T. M. Henkin, J. V. Hines, Nucleic Acids Res. 2002, 30, 1065–1072.
- 29J. C. Grigg, Y. Chen, F. J. Grundy, T. M. Henkin, L. Pollack, A. Ke, Proc. Natl. Acad. Sci. USA 2013, 110, 7240–7245.
- 30J. Zhang, A. R. Ferre-D′Amare, Nature 2013, 500, 363–366.
- 31A. T. Chang, E. P. Nikonowicz, FEBS Lett. 2013, 587, 3495–3499.
- 32J. Wang, T. M. Henkin, E. P. Nikonowicz, Nucleic Acids Res. 2010, 38, 3388–3398.
- 33B. C. Duffy, L. Zhu, H. Decornez, D. B. Kitchen, Bioorg. Med. Chem. 2012, 20, 5324–5342.
- 34R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, P. S. Shenkin, J. Med. Chem. 2004, 47, 1739–1749.
- 35J. Wang, E. Nikonowicz, J. Mol. Biol. 2011, 408, 99–117.
- 36O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455–461.
- 37G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785–2791.
- 38C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Delivery Rev. 2001, 46, 3–26.
- 39J. J. Biemer, Ann. Clin. Lab. Sci. 1973, 3, 135–140.
- 40J. H. Jorgensen, M. J. Ferraro, Clin. Infect. Dis. 2009, 49, 1749–1755.
- 41J. M. Andrews, J. Antimicrob. Chemother. 2001, 48, 5–16.
- 42S. A. Salmon, J. L. Watts, Avian Dis. 2000, 44, 85–98.
- 43X. K. Zhou, M. A. Clyde, J. Garrett, V. Lourdes, M. O'Connell, G. Parmigiani, D. J. Turner, T. Wiles, Ann. Appl. Stat. 2009, 3, 710–730.
- 44L. R. Peterson, C. J. Shanholtzer, Clin. Microbiol. Rev. 1992, 5, 420–432.
- 45V. A. Luna, D. S. King, J. Gulledge, A. C. Cannons, P. T. Amuso, J. Cattani, J. Antimicrob. Chemother. 2007, 60, 555–567.
- 46V. H. Tam, S. Kabbara, G. Vo, A. N. Schilling, E. Coyle, Antimicrob. Agents Chemother. 2006, 50, 2626–2631.
- 47D. A. Tadesse, S. Zhao, E. Tong, A. Ayers, A. Singh, M. J. Bartholomew, P. F. McDermott, Emerging Infect. Dis. 2012, 18, 741–749.
- 48S. E. Luria, M. Delbrück, Genetics 1943, 28, 491–511.
- 49L. Boulos, M. Prevost, B. Barbeau, J. Coallier, R. Desjardins, J. Microbiol. Methods 1999, 37, 77–86.
- 50M. B. Johnson, A. K. Criss, J. Vis. Exp. 2013, 79, 50729.
- 51C. Coelho, L. Tesfa, J. Zhang, J. Rivera, T. Goncalves, A. Casadevall, Infect. Immun. 2012, 80, 1467–1478.
- 52E. Binda, F. Marinelli, G. L. Marcone, Antibiotics (Basel) 2014, 3, 572–594.
- 53G. Bell, C. MacLean, Trends Microbiol. 2018, 26, 471–483.
- 54A. González, M. F. Fillat, A. Lanas, Future Med. Chem. 2018, 10, 541–560.
- 55J. M. Ho, E. Bakkalbasi, D. Söll, C. A. Miller, RNA Biol. 2018, 15, 667–677.
- 56P. F. Agris, RNA 2015, 21, 552–554.
- 57D. Matzov, A. Bashan, A. Yonath, Annu. Rev. Biochem. 2017, 86, 567–583.
- 58H. Wang, P. A. Mann, L. Xiao, C. Gill, A. M. Galgoci, J. A. Howe, A. Villafania, C. M. Barbieri, J. C. Malinverni, X. Sher, T. Mayhood, M. D. McCurry, N. Murgolo, A. Flattery, M. Mack, T. Roemer, Cell Chem. Biol. 2017, 24, 576–588.
- 59H. Chan, J. Ho, X. Liu, L. Zhang, S. H. Wong, M. T. Chan, W. K. Wu, Infect. Drug Resist. 2017, 10, 521–532.
- 60P. Machtel, K. Bąkowska-Żywicka, M. Żywicki, J. Appl. Genet. 2016, 57, 531–541.
- 61R. Anupam, L. Denapoli, A. Muchenditsi, J. V. Hines, Bioorg. Med. Chem. 2008, 16, 4466–4470.
- 62R. Anupam, A. Nayek, N. J. Green, F. J. Grundy, T. M. Henkin, J. A. Means, S. C. Bergmeier, J. V. Hines, Bioorg. Med. Chem. Lett. 2008, 18, 3541–3544.
- 63I. Maciagiewicz, S. Zhou, S. C. Bergmeier, J. V. Hines, Bioorg. Med. Chem. Lett. 2011, 21, 4524–4527.
- 64C. M. Orac, S. Zhou, D. Boehm, S. C. Bergmeier, J. V. Hines, J. Med. Chem. 2011, 54, 6786–6795.
- 65S. Zhou, G. Acquaah-Harrison, S. C. Bergmeier, J. V. Hines, Bioorg. Med. Chem. Lett. 2011, 21, 7059–7063.
- 66S. Zhou, J. A. Means, G. Acquaah-Harrison, S. C. Bergmeier, J. H. Hines, Chem. Biol. Drug Des. 2012, 79, 202–208.
- 67F. Jentzsch, J. V. Hines, BMC Bioinformatics 2012, 13 (Suppl. 2), S 5.
- 68E. Caserta, L. C. Liu, J. F. Grundy, T. M. Henkin, J. Biol. Chem. 2015, 290, 23336–23347.
- 69S. Hanessian, K. Pachamuthu, J. Szychowski, A. Giguère, E. E. Swayze, M. T. Migawa, B. François, J. Kondo, E. Westhof, Bioorg. Med. Chem. Lett. 2010, 20, 7097–7101.
- 70V. Stamatopoulou, M. Apostolidi, S. Li, K. Lamprinou, A. Papakyriakou, J. Zhang, C. Stathopoulos, Nucleic Acids Res. 2017, 45, 10242–10258.
- 71J. Palacino, S. E. Swalley, C. Song, A. K. Cheung, L. Shu, X. Zhang, M. Van Hoosear, Y. Shin, D. N. Chin, C. G. Keller, M. Beibel, N. A. Renaud, T. M. Smith, M. Salcius, X. Shi, M. Hild, R. Servais, M. Jain, L. Deng, C. Bullock, M. McLellan, S. Schuierer, L. Murphy, M. J. Blommers, C. Blaustein, F. Berenshteyn, A. Lacoste, J. R. Thomas, G. Roma, G. A. Michaud, B. S. Tseng, J. A. Porter, V. E. Myer, J. A. Tallarico, L. G. Hamann, D. Curtis, M. C. Fishman, W. F. Dietrich, N. A. Dales, R. Sivasankaran, Nat. Chem. Biol. 2015, 11, 511–517.
- 72M. D. Disney, L. P. Labuda, D. J. Paul, S. G. Poplawski, A. Pushechnikov, T. Tran, S. P. Velagapudi, M. Wu, J. L. Childs-Disney, J. Am. Chem. Soc. 2008, 130, 11185–11194.
- 73S. P. Velagapudi, S. M. Gallo, M. D. Disney, Nat. Chem. Biol. 2014, 10, 291–297.
- 74C. Ma, X. Yang, P. J. Lewis, ACS Infect. Dis. 2016, 2, 39–46.
- 75M. Mielczarek, R. V. Thomas, C. Ma, H. Kandemir, X. Yang, M. Bhadbhade, D. S. Black, R. Griffith, P. J. Lewis, N. Kumar, Bioorg. Med. Chem. 2015, 23, 1763–1775.
- 76J. P. Hughes, S. Rees, S. B. Kalindjian, K. L. Philpott, Br. J. Pharmacol. 2011, 162, 1239–1249.
- 77R. O′Shea, H. E. Moser, J. Med. Chem. 2008, 51, 2871–2878.
- 78M. D. Disney, B. G. Dwyer, J. L. Childs-Disney, Cold Spring Harbor Perspect. Biol. 2018, 10, a 034769.
- 79A. K. Lam, M. A. Hill, E. L. Moen, J. Pusavat, C. L. Wouters, C. V. Rice, ChemMedChem 2018, 13, 2240–2248.
- 80T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, J. L. Banks, J. Med. Chem. 2004, 47, 1750–1759.
- 81A. W. Bauer, W. M. M. Kirby, J. L. Sherris, M. Turck, Am. J. Clin. Pathol. 1966, 45, 483–493.
- 82A. W. Bauer, C. E. Roberts, Jr., W. M. Kirby, Antibiot. Annu. 1959, 7, 574–580.
- 83I. Wiegand, K. Hilpert, R. E. Hancock, Nat. Protoc. 2008, 3, 163–175.
- 84R. D. Pearson, R. T. Steigbigel, H. T. Davis, S. W. Chapman, Antimicrob. Agents Chemother. 1980, 18, 699–708.
- 85P. C. Taylor, F. D. Schoenknecht, J. C. Sherris, E. C. Linner, Antimicrob. Agents Chemother. 1983, 23, 142–150.
- 86J. A. Silverman, N. Oliver, T. Andrew, T. Li, Antimicrob. Agents Chemother. 2001, 45, 1799–1802.
- 87P. L. Foster, Methods Enzymol. 2006, 409, 195–213.
- 88W. A. Rosche, P. L. Foster, Methods 2000, 20, 4–17.
- 89S. Sarkar, W. T. Ma, G. H. Sandri, Genetica 1992, 85, 72–173.
- 90B. M. Hall, C. X. Ma, P. Liang, K. K. Singh, Bioinformatics 2009, 25, 1564–1565.
- 91K. B. Turner, N. A. Hagan, D. Fabris, Nucleic Acids Res. 2006, 34, 1305–1316.
- 92T. D. Schmittgen, L. L. Livak, Nat. Protoc. 2008, 3, 1101–1110.