Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metallo-β-Lactamase NDM-1
Dr. Abigail C. Jackson
Department of Chemistry, Duke University, Durham, NC 27708 USA
Search for more papers by this authorDr. Tyler B. J. Pinter
Department of Chemistry, Duke University, Durham, NC 27708 USA
Search for more papers by this authorDr. Daniel C. Talley
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorAdnan Baker-Agha
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorDhruvil Patel
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorProf. Paul J. Smith
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorCorresponding Author
Prof. Katherine J. Franz
Department of Chemistry, Duke University, Durham, NC 27708 USA
Search for more papers by this authorDr. Abigail C. Jackson
Department of Chemistry, Duke University, Durham, NC 27708 USA
Search for more papers by this authorDr. Tyler B. J. Pinter
Department of Chemistry, Duke University, Durham, NC 27708 USA
Search for more papers by this authorDr. Daniel C. Talley
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorAdnan Baker-Agha
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorDhruvil Patel
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorProf. Paul J. Smith
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 USA
Search for more papers by this authorCorresponding Author
Prof. Katherine J. Franz
Department of Chemistry, Duke University, Durham, NC 27708 USA
Search for more papers by this authorGraphical Abstract
Beating β-lactam beaters: Zinc-binding benzimidazoles and benzoxazoles were investigated for inhibition of the clinically important metallo-β-lactamase NDM-1, which inactivates nearly all β-lactam antibiotics. Several potent inhibitors were identified with IC50 values as low as 0.38 μM. Top compounds restored the susceptibility of NDM-1-expressing E. coli to meropenem. Spectroscopic and molecular docking studies suggest ternary complex formation as the inhibition mechanism.
Abstract
Bacterial expression of β-lactamases, which hydrolyze β-lactam antibiotics, contributes to the growing threat of antibacterial drug resistance. Metallo-β-lactamases, such as NDM-1, use catalytic zinc ions in their active sites and hydrolyze nearly all clinically available β-lactam antibiotics. Inhibitors of metallo-β-lactamases are urgently needed to overcome this resistance mechanism. Zinc-binding compounds are promising leads for inhibitor development, as many NDM-1 inhibitors contain zinc-binding pharmacophores. Here, we evaluated 13 chelating agents containing benzimidazole and benzoxazole scaffolds as NDM-1 inhibitors. Six of the compounds showed potent inhibitory activity with IC50 values as low as 0.38 μM, and several compounds restored the meropenem susceptibility of NDM-1-expressing E. coli. Spectroscopic and docking studies suggest ternary complex formation as the mechanism of inhibition, making these compounds promising for development as NDM-1 inhibitors.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cmdc202000607-sup-0001-misc_information.pdf6.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. F. Fisher, S. O. Meroueh, S. Mobashery, Chem. Rev. 2005, 105, 395–424;
- 1bD. M. Livermore, Clin. Microbiol. Rev. 1995, 8, 557–584.
- 2NDM-1 is an abbreviation for New Delhi metallo β-lactamase 1. This name associates bacterial disease with a specific geographical region and therefore a specific group of people who live there. Naming of diseases and disease-associated proteins or other agents in this way has the potential to lead to discrimination and xenophobia. Since efforts to rename NDM-1 have not been successful (see ref. [3]), we recommend use of the abbreviation “NDM-1” only and avoidance of use of the full name of the enzyme.
- 3
- 3aA. R. Singh, Mens sana monographs 2011, 9, 294–319;
- 3bP. R. Mohapatra, Indian J. Med. Res. 2013, 137, 213–215.
- 4
- 4aK. Bush, P. A. Bradford, Nat. Rev. Microbiol. 2019, 17, 295–306;
- 4bT. Palzkill, Ann. N. Y. Acad. Sci. 2013, 1277, 91–104;
- 4cP. Nordmann, L. Poirel, T. R. Walsh, D. M. Livermore, Trends Microbiol. 2011, 19, 588–595;
- 4dM. W. Crowder, J. Spencer, A. J. Vila, Acc. Chem. Res. 2006, 39, 721–728.
- 5
- 5aY. H. Yan, G. Li, G. B. Li, Med. Res. Rev. 2020;
- 5bL.-C. Ju, Z. Cheng, W. Fast, R. A. Bonomo, M. W. Crowder, Trends Pharmacol. Sci. 2018, 39, 635–647;
- 5cC. M. Rotondo, G. D. Wright, Curr. Opin. Microbiol. 2017, 39, 96–105;
- 5dW. Fast, L. D. Sutton, Biochim. Biophys. Acta Proteins Proteomics 2013, 1834, 1648–1659;
- 5eP. Linciano, L. Cendron, E. Gianquinto, F. Spyrakis, D. Tondi, ACS Infect. Dis. 2019, 5, 9–34.
- 6
- 6aB. B. Wang, N. Maghami, V. L. Goodlin, P. J. Smith, Bioorg. Med. Chem. Lett. 2004, 14, 3221–3226;
- 6bM. B. Reynolds, M. R. DeLuca, S. M. Kerwin, Bioorg. Chem. 1999, 27, 326–337;
- 6cD. Kumar, M. R. Jacob, M. B. Reynolds, S. M. Kerwin, Bioorg. Med. Chem. 2002, 10, 3997–4004;
- 6dS.-T. Huang, I. J. Hsei, C. Chen, Bioorg. Med. Chem. 2006, 14, 6106–6119.
- 7
- 7aD. N. Ward, D. C. Talley, M. Tavag, S. Menji, P. Schaughency, A. Baier, P. J. Smith, Bioorg. Med. Chem. Lett. 2014, 24, 609–612;
- 7bD. C. Talley, L. Delang, J. Neyts, P. Leyssen, P. J. Smith, Bioorg. Med. Chem. Lett. 2016, 26, 1196–1199.
- 8C. H. O′Callaghan, A. Morris, S. M. Kirby, A. H. Shingler, Antimicrob. Agents Chemother. 1972, 1, 283–288.
- 9H. Zhang, G. Ma, Y. Zhu, L. Zeng, A. Ahmad, C. Wang, B. Pang, H. Fang, L. Zhao, Q. Hao, Antimicrob. Agents Chemother. 2018, 62.
- 10
- 10aX. Wang, Y. Yang, Y. Gao, X. Niu, Int. J. Mol. Sci. 2020, 21, 3567;
- 10bA. U. Khan, A. Ali, G. Srivastava, A. Sharma, Sci. Rep. 2017, 7, 1–14.
- 11Q. Yuan, L. He, H. Ke, Antimicrob. Agents Chemother. 2012, 56, 5157–5163.
- 12
- 12aP. K. Thakur, J. Kumar, D. Ray, F. Anjum, M. I. Hassan, J. Nat. Sci. Biol. Med. 2013, 4, 51;
- 12bH. Chetia, D. K. Sharma, R. Sarma, A. Verma, Int. J. Pharm. 2014, 6, 299–303.
- 13
- 13aR. H. Stote, M. Karplus, Proteins Struct. Funct. Bioinf. 1995, 23, 12–31;
- 13bX. Hu, W. H. Shelver, J. Mol. Graphics Modell. 2003, 22, 115–126.
- 14D. Santos-Martins, S. Forli, M. J. o. Ramos, A. J. Olson, J. Chem. Inf. Model. 2014, 54, 2371–2379.
- 15H. Duan, X. Liu, W. Zhuo, J. Meng, J. Gu, X. Sun, K. Zuo, Q. Luo, Y. Luo, D. Tang, Mol. Simul. 2019, 45, 694–705.
- 16Y. Guo, J. Wang, G. Niu, W. Shui, Y. Sun, H. Zhou, Y. Zhang, C. Yang, Z. Lou, Z. Rao, Protein Cell 2011, 2, 384–394.
- 17
- 17aA. Ali, R. Kumar, M. A. Iquebal, S. Jaiswal, D. Kumar, A. U. Khan, Phys. Chem. Chem. Phys. 2019, 21, 17821–17835;
- 17bg. Zhang, Q. Hao, FASEB J. 2011, 25, 2574–2582;
- 17cA. U. Khan, M. T. Rehman, Antimicrob. Agents Chemother. 2016, 60, 356–360.
- 18P. Linciano, L. Cendron, E. Gianquinto, F. Spyrakis, D. Tondi, ACS Infect. Dis. 2018, 5, 9–34.
- 19A. N. Chan, A. L. Shiver, W. J. Wever, S. Z. A. Razvi, M. F. Traxler, B. Li, Proc. Natl. Acad. Sci. USA 2017, 114, 2717–2722.
- 20A. V. R. Rao, J. S. Yadav, K. K. Reddy, V. Upender, Tetrahedron Lett. 1991, 32, 5199–5202.
- 21W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923–2925.
- 22J. M. Zaengle-Barone, A. C. Jackson, D. M. Besse, B. Becken, M. Arshad, P. C. Seed, K. J. Franz, ACS Infect. Dis. 2018, 4, 1019–1029.
- 23
- 23aM. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminf. 2012, 4, 17;
- 23bAvogadro: an open-source molecular builder and visualization tool. Version 1.1 http://avogadro.cc/.
- 24S. Dallakyan, MGLTools 1.5.7 RC 1, Molecular Graphics Laboratory, The Scripps Research Institute., 2013.
- 25Schrodinger, LLC, The PyMOL Molecular Graphics System, version 2.5, 2015.
- 26O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455–461.
- 27G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785–2791.
- 28G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, J. Comput. Chem. 1998, 19, 1639–1662.
- 29R. Huey, G. M. Morris, A. J. Olson, D. S. Goodsell, J. Comput. Chem. 2007, 28, 1145–1152.
- 30R. A. Laskowski, M. B. Swindells, J. Chem. Inf. Model. 2011, 51, 2778–2786.