Oxygen Microscopy by Two-Photon-Excited Phosphorescence
Olga S. Finikova Dr.
Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
Search for more papers by this authorArtem Y. Lebedev Dr.
Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
Search for more papers by this authorAlexey Aprelev Dr.
Department of Physics, Drexel University, Philadelphia, PA 19104 (USA)
Search for more papers by this authorThomas Troxler Dr.
Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
Search for more papers by this authorFeng Gao Dr.
Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
Search for more papers by this authorCarmen Garnacho Dr.
Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (USA)
Search for more papers by this authorSilvia Muro Prof.
Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (USA)
Search for more papers by this authorRobin M. Hochstrasser Prof.
Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
Search for more papers by this authorSergei A. Vinogradov Prof.
Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
Search for more papers by this authorOlga S. Finikova Dr.
Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
Search for more papers by this authorArtem Y. Lebedev Dr.
Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
Search for more papers by this authorAlexey Aprelev Dr.
Department of Physics, Drexel University, Philadelphia, PA 19104 (USA)
Search for more papers by this authorThomas Troxler Dr.
Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
Search for more papers by this authorFeng Gao Dr.
Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
Search for more papers by this authorCarmen Garnacho Dr.
Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (USA)
Search for more papers by this authorSilvia Muro Prof.
Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (USA)
Search for more papers by this authorRobin M. Hochstrasser Prof.
Department of Chemistry and RLBL, University of Pennsylvannia, Philadelphia, PA 19104 (USA)
Search for more papers by this authorSergei A. Vinogradov Prof.
Department of Biochemistry and Biophysics, University of Pennsylvannia, Philadelphia PA 19104-6059 (USA), Fax: (+1) 215-573-3787
Search for more papers by this authorGraphical Abstract
Oxygen distributions are imaged by two-photon laser scanning microscopy (2P LSM) using a newly developed two-photon-enhanced phosphorescent nanoprobe (see figure). 2P LSM allows visualization of oxygen gradients in 3D with near diffraction-limited resolution, and lifetime-based measurements eliminate dependence on the local probe concentration.
Abstract
High-resolution images of oxygen distributions in microheterogeneous samples are obtained by two-photon laser scanning microscopy (2P LSM), using a newly developed dendritic nanoprobe with internally enhanced two-photon absorption (2PA) cross-section. In this probe, energy is harvested by a 2PA antenna, which passes excitation onto a phosphorescent metalloporphyrin via intramolecular energy transfer. The 2P LSM allows sectioning of oxygen gradients with near diffraction-limited resolution, and lifetime-based acquisition eliminates dependence on the local probe concentration. The technique is validated on objects with a priori known oxygen distributions and applied to imaging of pO2 in cells.
References
- 1J. K. Thompson, M. R. Peterson, R. D. Freeman, Science 2003, 299, 1070.
- 2G. B. Arden, R. L. Sidman, W. Arap, R. O. Schlingemann, Br. J. Ophthalmol. 2005, 89, 764.
- 3E. Skovsen, J. W. Snyder, P. R. Ogilby, Photochem. Photobiol. 2006, 82, 1187.
- 4J. M. Vanderkooi, G. Maniara, T. J. Green, D. F. Wilson, J. Biol. Chem. 1987, 262, 5476.
- 5W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, Science 1988, 241, 1649.
- 6R. D. Shonat, A. C. Kight, Ann. Biomed. Eng. 2003, 31, 1084.
- 7M. C. Hogan, J. Appl. Physiol. 1999, 86, 720.
- 8D. F. Wilson, S. A. Vinogradov, P. Grosul, M. N. Vaccarezza, A. Kuroki, J. Bennett, Appl. Opt. 2005, 44, 5239.
- 9A. S. Golub, M. C. Barker, R. N. Pittman, Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H 1097.
- 10R. L. Plant, D. H. Burns, Appl. Spectrosc. 1993, 47, 1594.
- 11Y. E. L. Koo, Y. F. Cao, R. Kopelman, S. M. Koo, M. Brasuel, M. A. Philbert, Anal. Chem. 2004, 76, 2498.
- 12W. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248, 73.
- 13W. Denk, D. W. Piston, W. W. Webb in Handbook of Biological Confocal Microscopy (Ed.: ), Springer, New York, 2006, pp. 535–549.
10.1007/978-0-387-45524-2_28 Google Scholar
- 14Excitation of a Pd porphyrin by 10 ns pulses at 1064 nm (10 Hz repetition rate) has been reported to produce detectable phosphorescence signals at high excitation powers (0.1–1.0 W) and high probe concentration (0.5 mM): E. G. Mik, T. G. van Leeuwen, N. J. Raat, C. Ince, J. Appl. Physiol. 2004, 97, 1962.
- 15R. P. Briñas, T. Troxler, R. M. Hochstrasser, S. A. Vinogradov, J. Am. Chem. Soc. 2005, 127, 11851.
- 16W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fréchet, M. Matuszewski, L. S. Tan, T. Y. Ohulchanskyy, P. N. Prasad, J. Am. Chem. Soc. 2004, 126, 5380.
- 17O. S. Finikova, T. Troxler, A. Senes, W. F. DeGrado, R. M. Hochstrasser, S. A. Vinogradov, J. Phys. Chem. A 2007, 111, 6977.
- 18O. S. Finikova, P. Chen, Z. Ou, K. M. Kadish, S. A. Vinogradov, J. Photochem. Photobiol. A 2008, 198, 75.
- 19I. B. Rietveld, E. Kim, S. A. Vinogradov, Tetrahedron 2003, 59, 3821.
- 20D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, S. A. Vinogradov, J. Appl. Physiol. 2006, 101, 1648.
- 21Y. R. Hong, C. B. Gorman, Langmuir 2006, 22, 10506.
- 22S. A. Vinogradov, Org. Lett. 2005, 7, 1761.
- 23J. Issberner, F. Vögtle, L. De Cola, V. Balzani, Chem. Eur. J. 1997, 3, 706.
- 24S. A. Vinogradov, L. W. Lo, D. F. Wilson, Chem. Eur. J. 1999, 5, 1338.
- 25V. V. Rozhkov, D. F. Wilson, S. A. Vinogradov, Macromolecules 2002, 35, 1991.
- 26Y. Kostov, P. Harms, R. S. Pilato, G. Rao, Analyst 2000, 125, 1175.
- 27H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller, M. A. Philbert, Anal. Chem. 2001, 73, 4124.
- 28H. B. Sun, T. Tanaka, S. Kawata, Appl. Phys. Lett. 2002, 80, 3673.
- 29Y. Tomoyose, D. L. Jiang, R. H. Jin, T. Aida, T. Yamashita, K. Horie, E. Yashima, Y. Okamoto, Macromolecules 1996, 29, 5236.
- 30G. R. Newkome, X. F. Lin, Macromolecules 1991, 24, 1443.
- 31L. K. Medina-Kauwe, J. Xie, S. Hamm-Alvarez, Gene Ther. 2005, 12, 1734.
- 32S. Muro, C. Gajewski, M. Koval, V. R. Muzykantov, Blood 2005, 105, 650.
- 33S. Muro, R. Wiewrodt, A. Thomas, L. Koniaris, S. M. Albelda, V. R. Muzykantov, M. Koval, J. Cell Sci. 2003, 116, 1599.
- 34M. L. Dustin, R. Rothlein, A. K. Bhan, C. A. Dinarello, T. A. Springer, J. Immunol. 1986, 137, 245.
- 35M. Robiolio, W. L. Rumsey, D. F. Wilson, Am. J. Physiol. 1989, 256, C 1207.
- 36F. F. Jobsis, Science 1977, 198, 1264.
- 37Redox Cell Biology and Genetics, Part A C. J. Koch, Methods Enzymol. 2002, 352, 3.
- 38H. M. Swartz, R. B. Clarkson, Phys. Med. Biol. 1998, 43, 1957.
- 39M. C. Krishna, S. English, K. Yamada, J. Yoo, R. Murugesan, N. Devasahayam, J. A. Cook, K. Golman, J. H. Ardenkjaer-Larsen, S. Subramanian, J. B. Mitchell, Proc. Natl. Acad. Sci. USA 2002, 99, 2216.