Edge Plane Pyrolytic Graphite Electrode Covalently Modified with 2-Anthraquinonyl Groups: Theory and Experiment
Barbara R. Kozub
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Search for more papers by this authorMartin C. Henstridge
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Search for more papers by this authorChristopher Batchelor-McAuley
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Search for more papers by this authorCorresponding Author
Prof. Dr. Richard G. Compton
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410Search for more papers by this authorBarbara R. Kozub
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Search for more papers by this authorMartin C. Henstridge
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Search for more papers by this authorChristopher Batchelor-McAuley
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Search for more papers by this authorCorresponding Author
Prof. Dr. Richard G. Compton
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410
Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, Fax: (+44) 1865-275-410Search for more papers by this authorGraphical Abstract
Two models of surface inhomogeneity based on Marcus–Hush theory are investigated to explain the electrochemical behavior of an edge plane pyrolytic graphite electrode modified with 2-anthraquinonyl groups. Both a distribution of formal potentials, E′, and a distribution of electron tunneling distances, r0, are considered. The simulation of cyclic voltammograms involving the distribution of formal potentials (see picture) shows a better fit than the simulation with the distribution of tunneling distances.
Abstract
An edge plane pyrolitic graphite (EPPG) electrode was modified by electrochemical reduction of anthraquinone-2-diazonium tetrafluoroborate (AQ2-N2+BF4−), giving an EPPG–AQ2-modified electrode of a surface coverage below a monolayer. Cyclic voltammograms simulated using Marcus–Hush theory for 2e− process assuming a uniform surface gave unrealistically low values of reorganisation energies, λ, for both electron transfer steps. Subsequently, two models of surface inhomogeneity based on Marcus–Hush theory were investigated: a distribution of formal potentials, E′, and a distribution of electron tunneling distances, r0. The simulation of cyclic voltammograms involving the distribution of formal potentials showed a better fit than the simulation with the distribution of tunneling distances. Importantly the reorganization energies used for the simulation of E′ distribution were similar to the literature values for adsorbed species.
References
- 1C. E. Banks, R. G. Compton, Analyst 2006, 131, 15–21.
- 2C. E. Banks, T. J. Davies, G. G. Wildgoose, R. G. Compton, Chem. Commun. 2005, 829–841.
- 3A. J. Bard, L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, Wiley, New York, 2001.
- 4M. A. T. Gilmartin, J. P. Hart, Analyst 1995, 120, 1029–1045.
- 5R. L. McCreery, Chem. Rev. 2008, 108, 2646–2687.
- 6G. G. Wildgoose, P. Abiman, R. G. Compton, J. Mater. Chem. 2009, 19, 4875–4886.
- 7J. H. Park, B. M. Gatewood, G. N. Ramaswamy, J. Appl. Polym. Sci. 2005, 98, 322–328.
- 8C. Fernández, M. S. Larrechi, M. P. Callao, TrAC Trends Anal. Chem. 2010, 29, 1202–1211.
- 9G. Jurmann, D. J. Schiffrin, K. Tammeveski, Electrochim. Acta 2007, 53, 390–399.
- 10G. G. Wildgoose, M. Pandurangappa, N. S. Lawrence, L. Jiang, T. G. J. Jones, R. G. Compton, Talanta 2003, 60, 887–893.
- 11G. Pognon, T. Brousse, L. Demarconnay, D. Bélanger, J. Power Sources 2011, 196, 4117–4122.
- 12K. Kalinathan, D. P. DesRoches, X. Liu, P. G. Pickup, J. Power Sources 2008, 181, 182–185.
- 13M. Quan, D. Sanchez, M. F. Wasylkiw, D. K. Smith, J. Am. Chem. Soc. 2007, 129, 12847–12856.
- 14A. D. Abhayawardhana, T. C. Sutherland, J. Electroanal. Chem. 2011, 653, 50–55.
- 15M. Pandurangappa, N. S. Lawrence, R. G. Compton, Analyst 2002, 127, 1568–1571.
- 16C. G. R. Heald, G. G. Wildgoose, L. Jiang, T. G. J. Jones, R. G. Compton, ChemPhysChem 2004, 5, 1794–1799.
- 17M. Pandurangappa, T. Ramakrishnappa, Mater. Chem. Phys. 2010, 122, 567–573.
- 18M. Delamar, R. Hitmi, J. Pinson, J. M. Savéant, J. Am. Chem. Soc. 1992, 114, 5883–5884.
- 19P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J. Pinson, J. Savéant, J. Am. Chem. Soc. 1997, 119, 201–207.
- 20A. Adenier, N. Barré, E. Cabet-Deliry, A. Chaussé, S. Griveau, F. Mercier, J. Pinson, C. Vautrin-Ul, Surf. Sci. 2006, 600, 4801–4812.
- 21P. A. Brooksby, A. J. Downard, Langmuir 2004, 20, 5038–5045.
- 22J. Lehr, B. E. Williamson, A. J. Downard, J. Phys. Chem. C 2011, 115, 6629–6634.
- 23F. Barrière, A. Downard, J. Solid State Electrochem. 2008, 12, 1231–1244.
- 24G. Liu, J. Liu, T. Böcking, P. K. Eggers, J. J. Gooding, Chem. Phys. 2005, 319, 136–146.
- 25J. Gooding, Electroanalysis 2008, 20, 573–582.
- 26G. Liu, T. Bocking, J. J. Gooding, J. Electroanal. Chem. 2007, 600, 335–344.
- 27S. Baranton, D. Bélanger, Electrochim. Acta 2008, 53, 6961–6967.
- 28A. Laforgue, T. Addou, D. Bélanger, Langmuir 2005, 21, 6855–6865.
- 29M. Janin, J. Ghilane, H. Randriamahazaka, J. Lacroix, Electrochem. Commun. 2009, 11, 647–650.
- 30J. Ghilane, P. Martin, O. Fontaine, J. Lacroix, H. Randriamahazaka, Electrochem. Commun. 2008, 10, 1060–1063.
- 31S. Gam-Derouich, B. Carbonnier, M. Turmine, P. Lang, M. Jouini, D. Ben Hassen-Chehimi, M. M. Chehimi, Langmuir 2010, 26, 11830–11840.
- 32S. Mahouche, N. Mekni, L. Abbassi, P. Lang, C. Perruchot, M. Jouini, F. Mammeri, M. Turmine, H. B. Romdhane, M. M. Chehimi, Surf. Sci. 2009, 603, 3205–3211.
- 33J. Pinson, F. Podvorica, Chem. Soc. Rev. 2005, 34, 429–439.
- 34J. Seinberg, M. Kullapere, U. Mäeorg, F. C. Maschion, G. Maia, D. J. Schiffrin, K. Tammeveski, J. Electroanal. Chem. 2008, 624, 151–160.
- 35M. P. Stewart, F. Maya, D. V. Kosynkin, S. M. Dirk, J. J. Stapleton, C. L. McGuiness, D. L. Allara, J. M. Tour, J. Am. Chem. Soc. 2004, 126, 370–378.
- 36B. L. Hurley, R. L. McCreery, J. Electrochem. Soc. 2004, 151, B 252–B259.
- 37C. E. D. Chidsey, Science 1991, 251, 919–922.
- 38G. K. Rowe, M. T. Carter, J. N. Richardson, R. W. Murray, Langmuir 1995, 11, 1797–1806.
- 39A. L. Eckermann, D. J. Feld, J. A. Shaw, T. J. Meade, Coord. Chem. Rev. 2010, 254, 1769–1802.
- 40E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28.
- 41P. Tau, T. Nyokong, J. Electroanal. Chem. 2007, 611, 10–18.
- 42R. A. Marcus, J. Chem. Phys. 1956, 24, 966–978.
- 43R. A. Marcus, J. Chem. Phys. 1965, 43, 679–701.
- 44L. Tender, M. T. Carter, R. W. Murray, Anal. Chem. 1994, 66, 3173–3181.
- 45N. S. Hush, Trans. Faraday Soc. 1961, 57, 557–580.
- 46K. B. Oldham, J. C. Myland, J. Electroanal. Chem. 2011, 655, 65–72.
- 47M. C. Henstridge, R. Gusmao, C. Batchelor-McAuley, R. G. Compton, unpublished results.
- 48S. W. Feldberg, Anal. Chem. 2010, 82, 5176–5183.
- 49W. J. Royea, A. M. Fajardo, N. S. Lewis, J. Phys. Chem. B 1997, 101, 11152–11159.
- 50W. J. Royea, T. W. Hamann, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. B 2006, 110, 19433–19442.
- 51P. P. Edwards, H. B. Gray, M. T. J. Lodge, R. J. P. Williams, Angew. Chem. 2008, 120, 6860–6868;
10.1002/ange.200703177 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6758–6765.
- 52P. He, Anal. Chem. 1995, 67, 986–992.
- 53D. J. Milner, Synth. Commun. 1992, 22, 73–82.
- 54K. Tammeveski, K. Kontturi, R. J. Nichols, R. J. Potter, D. J. Schiffrin, J. Electroanal. Chem. 2001, 515, 101–112.
- 55A. P. Brown, F. C. Anson, Anal. Chem. 1977, 49, 1589–1595.
- 56J. Xu, Q. Chen, G. M. Swain, Anal. Chem. 1998, 70, 3146–3154.
- 57K. Weber, S. E. Creager, Anal. Chem. 1994, 66, 3164–3172.