New Thermodynamics for Evaluating the Surface-phase Enrichment in the Lower Surface Tension Component
Corresponding Author
Prof. M. Soledade C. S. Santos
Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal), Fax: (+) 351-217-500-088
Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal), Fax: (+) 351-217-500-088===Search for more papers by this authorProf. João Carlos R. Reis
Centro de Ciências Moleculares e Materiais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal)
Search for more papers by this authorCorresponding Author
Prof. M. Soledade C. S. Santos
Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal), Fax: (+) 351-217-500-088
Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal), Fax: (+) 351-217-500-088===Search for more papers by this authorProf. João Carlos R. Reis
Centro de Ciências Moleculares e Materiais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal)
Search for more papers by this authorGraphical Abstract
Skin deep: Did you know there is a superficial alcohol content of 87 vol % in a 40 vol % alcoholic drink? Standard chemical potentials are introduced for surface-phase components, and quasi-exact expressions are worked out to compute ideal surface tensions and surface-phase compositions of real liquid mixtures.
Abstract
Regarding the surface phase of liquid mixtures as a thermodynamic phase, ideal surface phases are designed so that at fixed bulk-phase composition, real and ideal surface phases have the same chemical composition and identical limiting slopes for the dependence of surface tension on mole fraction. Standard chemical potentials are introduced for surface phase components, and quasi-exact expressions are worked out to compute ideal surface tensions and surface-phase compositions of real liquid mixtures. Guidelines for choosing molecular models to estimate the molar surface area of pure constituents are given. Ideal and excess surface tensions are calculated by using literature data for aqueous ethanol solutions at 298 K. These results show treatment based on Butler’s equations grossly overestimate predicted surface tensions, thus leading to lower ethanol content in the surface phase. These inaccuracies are ascribed to the use of molar surface areas in model equations that are too small.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc_201402100_sm_miscellaneous_information.pdf44.3 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Young, Philos. Trans. R. Soc. London 1805, 95, 65–87.
- 2I. Traube, Annalen 1891, 265, 27–55.
10.1002/jlac.18912650103 Google Scholar
- 3J. A. V. Butler, Proc. R. Soc. London Ser. A 1932, 135, 348–375.
- 4E. A. Guggenheim, Trans. Faraday Soc. 1940, 35, 397–412.
10.1039/tf9403500397 Google Scholar
- 5E. A. Guggenheim, Trans. Faraday Soc. 1945, 41, 150–156.
- 6E. A. Guggenheim, Thermodynamics, An Advanced Treatment for Chemists and Physicists, 5th ed., North-Holland, Amsterdam, 1967, pp. 45–48 and E. A. Guggenheim, Thermodynamics, An Advanced Treatment for Chemists and Physicists, 5th ed., North-Holland, Amsterdam, 1967, pp. 207–213.
- 7T. P. Hoar, D. A. Melford, Trans. Faraday Soc. 1957, 53, 315–326.
- 8F. B. Sprow, J. M. Prausnitz, Trans. Faraday Soc. 1966, 62, 1105–1111.
- 9A. Laaksonen, J. Chem. Phys. 1992, 97, 1983–1989.
- 10M. Tjahjono, M. Garland, J. Colloid Interface Sci. 2010, 345, 528–537.
- 11J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Vol. 1, Dover, New York, 1961, pp. 234–235.
- 12R. A. Alberty, Chem. Rev. 1994, 94, 1457–1482.
- 13I. Prigogine, J. Chim. Phys. 1950, 47, 33–40.
- 14R. Defay, I. Prigogine, Tension Superficielle et Adsorption, Desoer, Liège, 1951.
- 15M. Salonen, J. Malila, I. Napari, A. Laaksonen, J. Phys. Chem. B 2005, 109, 3472–3479.
- 16J. C. R. Reis, T. P. Iglesias, G. Douhéret, M. I. Davis, Phys. Chem. Chem. Phys. 2009, 11, 3977–3986.
- 17J. G. Kirkwood, I. Oppenheim, Chemical Thermodynamics, McGraw-Hill, New York, 1961, p. 158.
- 18R. W. Missen, Ind. Eng. Chem. Fundam. 1969, 8, 81–84.
- 19R. Bennes, J.-M. Douillard, M. Privat, E. Tronel-Peyroz, J. Colloid Interface Sci. 1987, 117, 574–575.
- 20J. C. Eriksson, Adv. Chem. Phys. 1964, 6, 145–174.
- 21I. Prigogine, L. Sarolea, J. Chim. Phys. 1950, 47, 807–815.
- 22C. A. Eckert, J. M. Prausnitz, AIChE J. 1964, 10, 677–683.
- 23R. Tahery, H. Modarress, J. Satherley, Chem. Eng. Sci. 2005, 60, 4935–4952.
- 24A. Y. Meyer, J. Chem. Soc. Perkin Trans. 2 1985, 1161–1169.
- 25A. L. McClellan, H. F. Harnsberger, J. Colloid Interface Sci. 1967, 23, 577–599.
- 26D. E. Goldsack, C. D. Sarvas, Can. J. Chem. 1981, 59, 2968–2980.
- 27H. K. Livingston, J. Am. Chem. Soc. 1944, 66, 569–573.
- 28G. A. Slack, Z. Kristallogr. 1983, 165, 1–22.
- 29D. E. Goldsack, B. R. White, Can. J. Chem. 1983, 61, 1725–1729.
- 30L. J. Paquette, Thesis, Laurentian University, 1982.
- 31J. T. Suarez, C. Torres-Marchal, P. Rasmussen, Chem. Eng. Sci. 1989, 44, 782–786.
- 32S. Nath, J. Colloid Interface Sci. 1999, 209, 116–122.
- 33B. M. S. Santos, A. G. M. Ferreira, I. M. A. Fonseca, Fluid Phase Equilib. 2003, 208, 1–21.
- 34B. Giner, P. Cea, M. C. López, F. M. Royo, C. Lafuente, J. Colloid Interface Sci. 2004, 275, 284–289.
- 35A. A. Rafati, A. Bagheri, M. Najafi, J. Chem. Eng. Data 2010, 55, 4039–4043.
- 36A. Bagheri, A. A. Rafati, A. A. Tajani, A. R. A. Borujeni, A. Hajian, J. Solution Chem. 2013, 42, 2071–2086.
- 37A. Y. Meyer, Chem. Soc. Rev. 1986, 15, 449–474.
- 38M. S. C. S. Santos, E. F. G. Barbosa, J. Phys. Chem. B 1998, 102, 6040–6048.
- 39B. E. Poling, J. M. Prausnitz, J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2001, pp. 12.1–12.27.
- 40L. L. Bircumshaw, J. Chem. Soc. Trans. 1922, 121, 887–891.
- 41E. A. Guggenheim, N. K. Adam, Proc. R. Soc. London Ser. A 1933, 139, 218–236.
- 42M. Aratono, T. Toyomasu, M. Villeneuve, Y. Uchizono, T. Takiue, K. Motomura, N. Ikeda, J. Colloid Interface Sci. 1997, 191, 146–153.
- 43R. Strey, Y. Viisanen, M. Aratono, J. P. Kratohvil, Q. Yin, S. E. Friberg, J. Phys. Chem. B 1999, 103, 9112–9116.
- 44I. M. S. Lampreia, A. F. S. Santos, M.-L. C. J. Moita, A. O. Figueiras, J. C. R. Reis, J. Chem. Thermodyn. 2012, 45, 75–82.
- 45M. J. Dávila, R. Alcade, M. Atilhan, S. Aparicio, J. Chem. Thermodyn. 2012, 47, 241–259.
- 46J. M. H. L. Sengers, J. Straub, K. Watanable, P. G. Hill, J. Phys. Chem. Ref. Data 1985, 14, 193–207.
- 47N. G. Polikhronidi, I. M. Abdulagatov, G. N. Stepanov, R. G. Batyrova, J. Supercrit. Fluids 2007, 43, 1–24.
- 48IUPAC Commission on Atomic Weights and Isotopic Abundance, Pure Appl. Chem. 1996, 68, 2339–2359.
- 49A. I. Rusanov in Progress in Surface and Membrane Science, Vol. 4 (Ed.: ), Academic Press, New York, 1971, pp. 57–114.
- 50M. Privat, R. Bennes, J. Colloid Interface Sci. 1982, 90, 454–468.
- 51J. E. Lane in Adsorption from Solution at the Solid/Liquid Interface (Eds.: ), Academic Press, London, 1983, pp. 49–104.
- 52B. Edmonds, I. A. McLure, J. Chem. Soc. Faraday Trans. 1 1982, 78, 3319–3329.
- 53I. A. McLure, V. A. M. Soares, A.-M. Williamson, Langmuir 1993, 9, 2190–2201.
- 54M. M. Neilson, J. Bowers, E. Manzanares-Papayanopoulos, J. R. Howse, M. C. Vergara-Gutierrez, P. J. Clements, A. N. Burgess, I. A. McLure, Phys. Chem. Chem. Phys. 1999, 1, 4635–4643.