Proposal for Laser Cooling of Complex Polyatomic Molecules
Corresponding Author
Ivan Kozyryev
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorLouis Baum
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorKyle Matsuda
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorProf. John M. Doyle
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorCorresponding Author
Ivan Kozyryev
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorLouis Baum
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorKyle Matsuda
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorProf. John M. Doyle
Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, 02138 USA
Department of Physics, Harvard University, Cambridge, MA, 02138 USA
Search for more papers by this authorGraphical Abstract
Cooling MORe molecules: An experimentally feasible strategy for direct laser cooling, to micro-kelvin temperatures, of alkaline earth monoalkoxide (MOR) polyatomic molecules with six or more atoms is presented. Our approach relies on the attachment of a metal atom to a complex molecule, where it acts as an active photon cycling site (see picture).
Abstract
An experimentally feasible strategy for direct laser cooling of polyatomic molecules with six or more atoms is presented. Our approach relies on the attachment of a metal atom to a complex molecule, where it acts as an active photon cycling site. We describe a laser cooling scheme for alkaline earth monoalkoxide free radicals taking advantage of the phase space compression of a cryogenic buffer-gas beam. Possible applications are presented including laser cooling of chiral molecules and slowing of molecular beams using coherent photon processes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc201601051-sup-0001-misc_information.pdf137.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, Rev. Mod. Phys. 1998, 70, 685.
- 2W. D. Phillips, Rev. Mod. Phys. 1998, 70, 721.
- 3I. Bloch, Nat. Phys. 2005, 1, 23.
- 4M. Lu, N. Q. Burdick, B. L. Lev, Phys. Rev. Lett. 2012, 108, 215301.
- 5K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 2012, 108, 210401.
- 6A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt, Rev. Mod. Phys. 2015, 87, 637.
- 7A. D. Ludlow, J. Ye, C. R. Phys. 2015, 16, 499.
- 8M. Saffman, T. Walker, K. Mølmer, Rev. Mod. Phys. 2010, 82, 2313.
- 9I. Buluta, S. Ashhab, F. Nori, Rep. Prog. Phys. 2011, 74, 104401.
- 10D. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt, F. Huber, G. Ji, M. Greiner, Science 2016, 351, 953.
- 11W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Foelling, L. Pollet, M. Greiner, Science 2010, 329, 547.
- 12L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V. Ramasesh, W. S. Bakr, T. Lompe, M. W. Zwierlein, Phys. Rev. Lett. 2015, 114, 193001.
- 13A. Omran, M. Boll, T. A. Hilker, K. Kleinlein, G. Salomon, I. Bloch, C. Gross, Phys. Rev. Lett. 2015, 115, 263001.
- 14I. Bloch, J. Dalibard, S. Nascimbene, Nat. Phys. 2012, 8, 267.
- 15I. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 2014, 86, 153.
- 16D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, Nat. Photonics 2010, 4, 161.
- 17G. Nemova, R. Kashyap, Rep. Prog. Phys. 2010, 73, 086501.
- 18J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Nature 2011, 478, 89.
- 19R. Peterson, T. Purdy, N. Kampel, R. Andrews, P.-L. Yu, K. Lehnert, C. Regal, Phys. Rev. Lett. 2016, 116, 063601.
- 20M. Di Rosa, Eur. Phys. J. D 2004, 31, 395.
- 21B. K. Stuhl, B. C. Sawyer, D. Wang, J. Ye, Phys. Rev. Lett. 2008, 101, 243002.
- 22E. S. Shuman, J. F. Barry, D. DeMille, Nature 2010, 467, 820.
- 23J. F. Barry, E. S. Shuman, E. B. Norrgard, D. Demille, Phys. Rev. Lett. 2012, 108, 103002.
- 24M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, J. Ye, Phys. Rev. Lett. 2013, 110, 143001.
- 25M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, J. Ye, Phys. Rev. Lett. 2015, 114, 223003.
- 26V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. Hinds, M. Tarbutt, B. Sauer, Phys. Rev. A 2014, 89, 053416.
- 27B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle, J. M. Doyle, J. Phys. B 2016, 49, 174001.
- 28S. Truppe, H. Williams, M. Hambach, N. Fitch, T. Wall, E. Hinds, B. Sauer, M. Tarbutt, arXiv preprint arXiv:1605.06055, 2016.
- 29J. Barry, D. McCarron, E. Norrgard, M. Steinecker, D. DeMille, Nature 2014, 512, 286.
- 30D. McCarron, E. Norrgard, M. Steinecker, D. DeMille, New J. Phys. 2015, 17, 035014.
- 31E. Norrgard, D. McCarron, M. Steinecker, M. Tarbutt, D. DeMille, Phys. Rev. Lett. 2016, 116, 063004.
- 32T. Isaev, R. Berger, Phys. Rev. Lett. 2016, 116, 063006.
- 33I. Kozyryev, L. Baum, K. Matsuda, B. Hemmerling, J. M. Doyle, J. Phys. B 2016, 49, 134002.
- 34I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. Sedlack, J. M. Doyle, arXiv:1609.02254, 2016.
- 35P. Jansen, H. L. Bethlem, W. Ubachs, J. Chem. Phys. 2014, 140, 010901.
- 36M. G. Kozlov, S. A. Levshakov, Ann. Phys. 2013, 525, 452.
- 37Y. Stadnik, V. Flambaum, Phys. Rev. Lett. 2015, 115, 201301.
- 38K. Van Tilburg, N. Leefer, L. Bougas, D. Budker, Phys. Rev. Lett. 2015, 115, 011802.
- 39J. Bagdonaite, P. Jansen, C. Henkel, H. L. Bethlem, K. M. Menten, W. Ubachs, Science 2013, 339, 46.
- 40E. Herbst, E. F. Van Dishoeck, Annu. Rev. Astron. Astrophys. 2009, 47, 427.
- 41M. Wall, K. Maeda, L. D. Carr, New J. Phys. 2015, 17, 025001.
- 42M. L. Wall, K. Maeda, L. D. Carr, Ann. Phys. 2013, 525, 845.
- 43C. M. Tesch, R. de Vivie-Riedle, Phys. Rev. Lett. 2002, 89, 157901.
- 44E. Berrios, M. Gruebele, D. Shyshlov, L. Wang, D. Babikov, J. Phys. Chem. A 2012, 116, 11347.
- 45D. Weidinger, M. Gruebele, Mol. Phys. 2007, 105, 1999.
- 46M. Quack, Fundamental symmetries and symmetry violations from high-resolution spectroscopy, vol. 1, Wiley Online Library, 2011.
10.1002/9780470749593.hrs077 Google Scholar
- 47M. Quack, J. Stohner, M. Willeke, Annu. Rev. Phys. Chem. 2008, 59, 741.
- 48Y.-P. Chang, D. A. Horke, S. Trippel, J. Küpper, Int. Rev. Phys. Chem. 2015, 34, 557.
- 49H. L. Bethlem, F. M. Crompvoets, R. T. Jongma, S. Y. van de Meerakker, G. Meijer, Phys. Rev. A 2002, 65, 053416.
- 50H. L. Bethlem, G. Berden, F. M. Crompvoets, R. T. Jongma, A. J. Van Roij, G. Meijer, Nature 2000, 406, 491.
- 51T. Momose, Y. Liu, S. Zhou, P. Djuricanin, D. Carty, Phys. Chem. Chem. Phys. 2013, 15, 1772.
- 52R. Fulton, A. I. Bishop, P. F. Barker, Phys. Rev. Lett. 2004, 93, 243004.
- 53S. Chervenkov, X. Wu, J. Bayerl, A. Rohlfes, T. Gantner, M. Zeppenfeld, G. Rempe, Phys. Rev. Lett. 2014, 112, 013001.
- 54D. Patterson, J. M. Doyle, Phys. Chem. Chem. Phys. 2015, 17, 5372.
- 55B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, J. Ye, Nature 2016, 533, 517.
- 56M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570.
- 57A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, M. Zeppenfeld, Phys. Rev. Lett. 2016, 116, 063005.
- 58C. Brazier, L. Ellingboe, S. Kinsey-Nielsen, P. Bernath, J. Am. Chem. Soc. 1986, 108, 2126.
- 59MolView, URL http://molview.org/, 2016.
- 60P. F. Bernath, Adv. Photochem. 1997, 23, 1.
- 61L. O'Brien, C. Brazier, P. Bernath, J. Mol. Spectrosc. 1998, 130, 33.
- 62R. Nicholls, Astrophys. J. Suppl. Ser. 1981, 47, 279.
- 63J. F. Barry, Ph.D. thesis, Yale University, 2013.
- 64D. Forthomme, C. Linton, A. Read, D. Tokaryk, A. Adam, L. Downie, A. Granger, W. Hopkins, J. Mol. Spectrosc. 2011, 270, 108.
- 65W. Demtröder, Molecular Physics: Theoretical Principles and Experimental Methods, Wiley-VCH Verlag, 2003.
- 66P. Crozet, F. Martin, A. Ross, C. Linton, M. Dick, A. Adam, J. Mol. Spectrosc. 2002, 213, 28.
- 67M. Elhanine, R. Lawruszczuk, B. Soep, Chem. Phys. Lett. 1998, 288, 785.
- 68T. Nguyen, D. L. Kokkin, T. Steimle, I. Kozyryev, J. M. Doyle in International Symposium on Molecular Spectroscopy, 2015.
- 69Y. Cunyun, Tunable external cavity diode lasers, Hackensack, World Scientific, 2004.
10.1142/5694 Google Scholar
- 70P. J. Dagdigian, H. W. Cruse, R. N. Zare, J. Chem. Phys. 1974, 60, 2330.
- 71E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, New York, 1955.
10.1119/1.1934101 Google Scholar
- 72T. Sharp, H. Rosenstock, J. Chem. Phys. 1964, 41, 3453.
- 73I. Kozyryev, L. Baum, K. Matsuda, J. M. Doyle, Supplementary Material, 2016.
- 74R. Wormsbecher, R. Suenram, J. Mol. Spectrosc. 1982, 95, 391.
- 75S. Zhao, S. Ghosh, Int. J. Infrared Millimeter Waves 1995, 16, 547.
- 76C. Whitham, S. Beaton, Y. Ito, J. Brown, J. Mol. Spectrosc. 1998, 191, 286.
- 77H. Ball, M. Lee, S. Gensemer, M. Biercuk, Rev. Sci. Instrum. 2013, 84, 063107.
- 78G. Herzberg, Molecular spectra and molecular structure. Vol. 3: Electronic spectra and electronic structure of polyatomic molecules, vol. 3, Van Nostrand, New York, 1966.
- 79C. Brazier, P. Bernath, J. Mol. Spectrosc. 1985, 114, 163.
- 80G. Fischer, Vibronic coupling: The interaction between the electronic and nuclear motions, Academic Press, New York, 1984.
- 81P. I. Presunka, J. A. Coxon, J. Chem. Phys. 1994, 101, 201.
- 82M. J. Dick, Ph.D. thesis, University of Waterloo, 2007.
- 83G. Herzberg, Molecular spectra and molecular structure. Vol. 1: Spectra of diatomic molecules, vol. 1 2nd ed., Van Nostrand Reinhold, New York, 1950.
- 84E. S. Shuman, J. F. Barry, D. R. Glenn, D. DeMille, Phys. Rev. Lett. 2009, 103, 223001.
- 85W. Peng, L. Zhou, S. Long, J. Wang, M. Zhan, Opt. Lett. 2014, 39, 2998.
- 86P. Sheridan, M. Dick, J.-G. Wang, P. Bernath, J. Phys. Chem. A 2005, 109, 10547.
- 87K. I. C. Namiki, J. S. Robinson, T. Steimle, J. Chem. Phys. 1998, 109, 5283.
- 88C.-Y. Lien, C. M. Seck, Y.-W. Lin, J. H. Nguyen, D. A. Tabor, B. C. Odom, Nat. Commun. 2014, 5, 4783.
- 89M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, P. Pillet, Science 2008, 321, 232.
- 90W. C. Campbell, J. M. Doyle in Cold Molecules: Theory, Experiment, Applications, CRC Press, Boca Raton, 2009.
- 91D. Egorov, W. Campbell, B. Friedrich, S. Maxwell, E. Tsikata, L. van Buuren, J. Doyle, Eur. J. Phys. D 2004, 31, 307.
- 92N. R. Hutzler, H.-I. Lu, J. M. Doyle, Chem. Rev. 2012, 112, 4803.
- 93R. J. Shannon, M. A. Blitz, A. Goddard, D. E. Heard, Nat. Chem. 2013, 5, 745.
- 94E. R. Hudson, H. Lewandowski, B. C. Sawyer, J. Ye, Phys. Rev. Lett. 2006, 96, 143004.
- 95I. C. Lane, Phys. Rev. A 2015, 92, 022511.
- 96I. C. Lane, Phys. Chem. Chem. Phys. 2012, 14, 15078.
- 97M. Fu, H. Ma, J. Cao, W. Bian, J. Chem. Phys. 2016, 144, 184302.
- 98N. Wells, I. C. Lane, Phys. Chem. Chem. Phys. 2011, 13, 19036.
- 99D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, T. J. Greytak, Phys. Rev. Lett. 1998, 81, 3811.
- 100B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, J. Ye, Nature 2012, 492, 396.
- 101H. G. Floss, S. Lee, Acc. Chem. Res. 1993, 26, 116.
- 102J. Cornforth, J. Redmond, Nature 1969, 221, 1212.
- 103J. Lüthy, J. Retey, D. Arigoni, Nature 1969, 221, 1213.
- 104A. Schweifer, F. Hammerschmidt, Tetrahedron 2008, 64, 7605.
- 105R. Berger, M. Quack, A. Sieben, M. Willeke, Helv. Chim. Acta 2003, 86, 4048.
- 106K. C. Thompson, P. Margey, Phys. Chem. Chem. Phys. 2003, 5, 2970.
- 107M. S. Gordon, R. Damrauer, M. Krempp, J. Phys. Chem. 1993, 97, 7820.
- 108R. Damrauer, R. Simon, M. Krempp, J. Am. Chem. Soc. 1991, 113, 4431.
- 109H. Kumagai, IEEE J. Quantum Electron. 2004, 10, 1252.
- 110M. Tarbutt, T. Steimle, Phys. Rev. A 2015, 92, 053401.
- 111M. Chieda, E. Eyler, Phys. Rev. A 2011, 84, 063401.
- 112L. Aldridge, S. Galica, E. Eyler, Phys. Rev. A 2016, 93, 013419.
- 113A. Jayich, A. Vutha, M. Hummon, J. Porto, W. Campbell, Phys. Rev. A 2014, 89, 023425.
- 114E. Ilinova, J. Weinstein, A. Derevianko, New J. Phys. 2015, 17, 055003.
- 115H.-I. Lu, I. Kozyryev, B. Hemmerling, J. Piskorski, J. M. Doyle, Phys. Rev. Lett. 2014, 112, 113006.
- 116T. Tscherbul, H.-G. Yu, A. Dalgarno, Phys. Rev. Lett. 2011, 106, 073201.
- 117T. Tscherbul, T. Grinev, H.-G. Yu, A. Dalgarno, J. Kłos, L. Ma, M. H. Alexander, J. Chem. Phys. 2012, 137, 104302.
- 118T. Tscherbul, J. Kłos, A. Buchachenko, Phys. Rev. A 2011, 84, 040701.
- 119X. Zhuang, A. Le, T. C. Steimle, R. Nagarajan, V. Gupta, J. P. Maier, Phys. Chem. Chem. Phys. 2010, 12, 15018.
- 120A. Le, T. C. Steimle, V. Gupta, C. A. Rice, J. P. Maier, S. H. Lin, C.-K. Lin, J. Chem. Phys. 2011, 135, 104303.
- 121R. V. Krems, Phys. Chem. Chem. Phys. 2008, 10, 4079.