Precursor States of Organic Adsorbates on Semiconductor Surfaces are Chemisorbed and Immobile
Lisa Pecher
Faculty of Chemistry and Material Sciences Centre, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
Search for more papers by this authorCorresponding Author
Dr. Ralf Tonner
Faculty of Chemistry and Material Sciences Centre, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
Search for more papers by this authorLisa Pecher
Faculty of Chemistry and Material Sciences Centre, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
Search for more papers by this authorCorresponding Author
Dr. Ralf Tonner
Faculty of Chemistry and Material Sciences Centre, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
Search for more papers by this authorGraphical Abstract
The ties that bind: Ethylene on silicon(001) defies common surface adsorption theories by forming a covalent bond to the surface even at a weakly bound intermediate state, in contrast to adsorption models derived for metal surfaces. The ambiguous concept of chemisorption needs to be redefined via quantitative computational analysis to improve understanding of adsorption kinetics.
Abstract
Intermediate states to covalent attachment of molecules on surfaces, so called precursors, are usually considered to be physisorbed and mobile. We show that this view should be reconsidered and provide evidence for a chemisorbed precursor for ethylene on Si(001). The character of the molecule-surface bond as a π complex is determined and quantified using our recently developed method for energy and charge analysis in extended systems. In contrast to previous assumptions, the precursor should thus be immobile, which is underlined by computation of high diffusion energy barriers. This has important implications for understanding and modelling of adsorption kinetics. Our analysis highlights that taking the viewpoint of molecular chemistry helps uncover important aspects in the adsorption process on surfaces. Previous experimental results that appear to be in contrast to our model are examined and reinterpreted.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc201601129-sup-0001-misc_information.pdf408.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. E. Lennard-Jones, Trans. Faraday Soc. 1932, 28, 333;
- 1bD. A. King, Crit. Rev. Solid State Mater. Sci. 1978, 7, 167;
- 1cG. Ertl, Angew. Chem. Int. Ed. 2008, 47, 3524;
- 1dM. Bowker, J. Phys. Condens. Matter 2010, 22, 263002.
- 2
- 2aR. Gomer, Discuss. Faraday Soc. 1959, 28, 23;
- 2bG. Ehrlich, F. G. Hudda, J. Chem. Phys. 1961, 35, 1421.
- 3
- 3aE. S. Hood, B. H. Toby, W. H. Weinberg, Phys. Rev. Lett. 1985, 55, 2437;
- 3bW. H. Weinberg in Kinetics of Interface Reactions (Eds.: M. Grunze, H. J. Kreuzer), Springer, Berlin, 1987;
- 3cD. J. Doren, J. C. Tully, Langmuir 1988, 4, 256;
- 3dD. J. Doren, J. C. Tully, J. Chem. Phys. 1991, 94, 8428.
- 4
- 4aC. T. Campbell, J. R. V. Sellers, J. Am. Chem. Soc. 2012, 134, 18109;
- 4bC. T. Campbell, L. Árnadóttir, J. R. V. Sellers, Z. Phys. Chem. 2013, 227, 1435;
- 4cJ. F. Weaver, Science 2013, 339, 39;
- 4dJ. Gaberle, D. Z. Gao, M. B. Watkins, A. L. Shluger, J. Phys. Chem. C 2016, 120, 3913.
- 5
- 5aL. Clemen, R. Wallace, P. Taylor, Surf. Sci. 1992, 268, 205;
- 5bP. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choyke, J. T. Yates, Jr., J. Am. Chem. Soc. 1992, 114, 6754;
- 5cC. S. Carmer, B. Weiner, M. Frenklach, J. Chem. Phys. 1993, 99, 1356;
- 5dH. C. Flaum, D. J. D. Sullivan, A. C. Kummel, J. Phys. Chem. 1994, 98, 1719;
- 5eX. H. Chen, Q. Kong, J. C. Polanyi, D. Rogers, S. So, Surf. Sci. 1995, 340, 224;
- 5fM. C. Flowers, N. B. Jonathan, A. Morris, S. Wright, Surf. Sci. 1996, 351, 87.
- 6A. Groß, Theoretical Surface Science: A Microscopic Perspective, Springer, Berlin, Heidelberg, 2003.
- 7
- 7aP. W. Anderson, Phys. Rev. 1961, 124, 41;
- 7bT. B. Grimley, Proc. Phys. Soc. London 1967, 90, 751;
- 7cD. M. Newns, Phys. Rev. 1969, 178, 1123.
- 8R. Tonner, P. Rosenow, P. Jakob, Phys. Chem. Chem. Phys. 2016, 18, 6316.
- 9M. Raupach, R. Tonner, J. Chem. Phys. 2015, 142, 194105.
- 10J. Yoshinobu, Prog. Surf. Sci. 2004, 77, 37.
- 11
- 11aC. H. Chung, W. J. Jung, I. W. Lyo, Phys. Rev. Lett. 2006, 97, 116102;
- 11bG. Mette, C. H. Schwalb, M. Dürr, U. Höfer, Chem. Phys. Lett. 2009, 483, 209;
- 11cM. A. Lipponer, N. Armbrust, M. Dürr, U. Höfer, J. Chem. Phys. 2012, 136, 144703.
- 12
- 12aJ.-H. Cho, L. Kleinman, Phys. Rev. B 2004, 69, 75303;
- 12bX. L. Fan, Y. F. Zhang, W. M. Lau, Z. F. Liu, Phys. Rev. B 2005, 72, 165305;
- 12cQ. J. Zhang, X. L. Fan, W. M. Lau, Z. F. Liu, Phys. Rev. B 2009, 79, 195303.
- 13In surface science, adsorption energy Eads is commonly defined with inverse sign convention (Eads=−Ebond).
- 14
- 14aJ. H. Cho, L. Kleinman, C. T. Chan, K. S. Kim, Phys. Rev. B 2001, 63, 73306;
- 14bR. Miotto, A. C. Ferraz, G. P. Srivastava, Surf. Sci. 2002, 507--510, 12;
- 14cM. Marsili, N. Witkowski, O. Pulci, O. Pluchery, P. L. Silvestrelli, R. D. Sole, Y. Borensztein, Phys. Rev. B 2008, 77, 125337;
- 14dS. W. Kim, J. H. Lee, H. J. Kim, J. H. Cho, Chem. Phys. Lett. 2013, 557, 159.
- 15
- 15aK. Morokuma, J. Chem. Phys. 1971, 55, 1236;
- 15bT. Ziegler, A. Rauk, Theor. Chim. Acta 1977, 46, 1;
- 15cF. M. Bickelhaupt, E. J. Baerends, in Rev. Comput. Chem. Vol. 15 (Eds.: K. B. Lipkowitz, D. B. Boyd), Wiley-VCH, Inc., New York, 2000, pp. 1;
- 15dM. von Hopffgarten, G. Frenking, WIREs Comput. Mol. Sci. 2012, 2, 43.
- 16M. Nagao, H. Umeyama, K. Mukai, Y. Yamashita, J. Yoshinobu, J. Am. Chem. Soc. 2004, 126, 9922.
- 17The crystal orbital and its eigenvalue are given at the Γ point in k space.
- 18
- 18aM. A. Filler, S. F. Bent, Prog. Surf. Sci. 2003, 73, 1;
- 18bM. Nagao, K. Mukai, Y. Yamashita, J. Yoshinobu, J. Phys. Chem. B 2004, 108, 5703.
- 19H.-J. Freund, Angew. Chem. Int. Ed. Engl. 1997, 36, 452;
- 20
- 20aM. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962;
- 20bM. Raupach, Ph.D. Thesis, Philipps-Universität Marburg, 2015.
- 21Deformation density Δρ2, with ΔE2=−88 kJ mol−1, represents back donation from σ(Si−Si) bonds at the surface into the π* orbital of the molecule.
- 22
- 22aM. Raupach, S. Dehnen, R. Tonner, J. Comput. Chem. 2014, 35, 1045;
- 22bJ.-N. Luy, S. A. Hauser, A. B. Chaplin, R. Tonner, Organometallics 2015, 34, 5099.
- 23
- 23aM. Z. Hossain, Y. Yamashita, K. Mukai, J. Yoshinobu, Phys. Rev. B 2003, 68, 235322;
- 23bG. Mette, M. Reutzel, R. Bartholomäus, S. Laref, R. Tonner, M. Dürr, U. Koert, U. Höfer, ChemPhysChem 2014, 15, 3725.
- 24Q. J. Zhang, J. L. Wang, Z. F. Liu, J. Phys. Chem. C 2007, 111, 6365.
- 25C. T. Campbell, J. R. V. Sellers, Chem. Rev. 2013, 113, 4106.
- 26
- 26aL. Pirolli, A. V. Teplyakov, J. Phys. Chem. B 2005, 109, 8462;
- 26bH. Guo, W. Ji, J. C. Polanyi, J. S. Y. Yang, ACS Nano 2008, 2, 699;
- 26cK. R. Harikumar, L. Leung, I. R. McNab, J. C. Polanyi, H. Lin, W. A. Hofer, Nat. Chem. 2009, 1, 716;
- 26dK. R. Harikumar, I. R. McNab, J. C. Polanyi, A. Zabet-Khosousi, C. Panosetti, W. A. Hofer, Chem. Commun. 2011, 47, 12101;
- 26eM. Ebrahimi, S. Y. Guo, K. Huang, T. Lim, I. R. McNab, Z. Ning, J. C. Polanyi, M. Shapero, J. S. Y. Yang, J. Phys. Chem. C 2012, 116, 10129;
- 26fX. Huang, R.-Y. Tian, X.-B. Yang, Y.-J. Zhao, J. Phys. Chem. C 2014, 118, 24603.
- 27
- 27aK. R. Harikumar, J. C. Polanyi, A. Zabet-Khosousi, P. Czekala, H. Lin, W. A. Hofer, Nat. Chem. 2011, 3, 400;
- 27bS. Y. Guo, S. J. Jenkins, W. Ji, Z. Ning, J. C. Polanyi, M. Sacchi, C. G. Wang, J. Phys. Chem. Lett. 2015, 6, 4093;
- 27cK. Huang, O. MacLean, S. Y. Guo, I. R. McNab, Z. Ning, C.-G. Wang, W. Ji, J. C. Polanyi, Surf. Sci. 2016, 652, 312.
- 28
- 28aD. E. Brown, D. J. Moffatt, R. A. Wolkow, Science 1998, 279, 542;
- 28bB. Borovsky, M. Krueger, E. Ganz, J. Vac. Sci. Technol. B 1999, 17, 7;
- 28cS. Yagi, N. Shirota, M. Taniguchi, E. Hashimoto, Surf. Sci. 2000, 454, 157;
- 28dK. Huang, I. R. McNab, J. C. Polanyi, J. Yang, Angew. Chem. Int. Ed. 2012, 51, 9061;
- 28eD. Lock, S. Sakulsermsuk, R. E. Palmer, P. A. Sloan, J. Phys. Condens. Matter 2015, 27, 054003;
- 28fM. Reutzel, G. Mette, P. Stromberger, U. Koert, M. Dürr, U. Höfer, J. Phys. Chem. C 2015, 119, 6018.
- 29
- 29aG. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558;
- 29bG. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251;
- 29cG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169;
- 29dG. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 30
- 30aP. Blöchl, Phys. Rev. B 1994, 50, 17953;
- 30bG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 31
- 31aJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865;
- 31bJ. P. Perdew, K. Burke, M. Enzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- 32
- 32aS. Grimme, J. Antony, S. Ehrlich, S. Krieg, J. Chem. Phys. 2010, 132, 154104;
- 32bS. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 33
- 33aJ. Heyd, G. E. Scuseria, M. Enzerhof, J. Chem. Phys. 2003, 118, 8207;
- 33bJ. Heyd, G. E. Scuseria, J. Chem. Phys. 2004, 121, 1187;
- 33cJ. Heyd, G. E. Scuseria, M. Enzerhof, J. Chem. Phys. 2006, 124, 219906.
- 34G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
- 35
- 35aJ. Tersoff, D. R. Hamann, Phys. Rev. Lett. 1983, 50, 1998;
- 35bJ. Tersoff, D. R. Hamann, Phys. Rev. B 1985, 31, 805.
- 36
- 36aW. A. Hofer, Prog. Surf. Sci. 2003, 71, 147;
- 36bK. Palotás, W. A. Hofer, J. Phys. Condens. Matter 2005, 17, 2705.