Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant
Yasemin Saygili
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
These authors contributed equally to this work
Search for more papers by this authorSilver-Hamill Turren-Cruz
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Benemérita Universidad Autónoma de Puebla., CIDS, Av. San Claudio y 18 Sur, Col. San Manuel, Ciudad Universitaria, CP 72570, P.O. Box 1067, Puebla, Pue., 7200 México
These authors contributed equally to this work
Search for more papers by this authorDr. Selina Olthof
Department of Chemistry, University of Cologne, Luxemburger Straße 116, 50939 Cologne, Germany
Search for more papers by this authorBartholomeus Wilhelmus Henricus Saes
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Ilknur Bayrak Pehlivan
Department of Engineering Sciences, Solid State Physics, Uppsala University, Box 534, SE, 751 21 Uppsala, Sweden
Search for more papers by this authorDr. Michael Saliba
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorProf. Dr. Klaus Meerholz
Department of Chemistry, University of Cologne, Luxemburger Straße 116, 50939 Cologne, Germany
Search for more papers by this authorProf. Tomas Edvinsson
Department of Engineering Sciences, Solid State Physics, Uppsala University, Box 534, SE, 751 21 Uppsala, Sweden
Search for more papers by this authorDr. Shaik M. Zakeeruddin
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorProf. Dr. Michael Grätzel
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Juan-Pablo Correa-Baena
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Current Address: Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
Search for more papers by this authorCorresponding Author
Prof. Anders Hagfeldt
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Dr. Marina Freitag
Department of Chemistry– Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorCorresponding Author
Dr. Wolfgang Tress
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorYasemin Saygili
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
These authors contributed equally to this work
Search for more papers by this authorSilver-Hamill Turren-Cruz
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Benemérita Universidad Autónoma de Puebla., CIDS, Av. San Claudio y 18 Sur, Col. San Manuel, Ciudad Universitaria, CP 72570, P.O. Box 1067, Puebla, Pue., 7200 México
These authors contributed equally to this work
Search for more papers by this authorDr. Selina Olthof
Department of Chemistry, University of Cologne, Luxemburger Straße 116, 50939 Cologne, Germany
Search for more papers by this authorBartholomeus Wilhelmus Henricus Saes
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Ilknur Bayrak Pehlivan
Department of Engineering Sciences, Solid State Physics, Uppsala University, Box 534, SE, 751 21 Uppsala, Sweden
Search for more papers by this authorDr. Michael Saliba
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorProf. Dr. Klaus Meerholz
Department of Chemistry, University of Cologne, Luxemburger Straße 116, 50939 Cologne, Germany
Search for more papers by this authorProf. Tomas Edvinsson
Department of Engineering Sciences, Solid State Physics, Uppsala University, Box 534, SE, 751 21 Uppsala, Sweden
Search for more papers by this authorDr. Shaik M. Zakeeruddin
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorProf. Dr. Michael Grätzel
Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorDr. Juan-Pablo Correa-Baena
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Current Address: Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
Search for more papers by this authorCorresponding Author
Prof. Anders Hagfeldt
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Dr. Marina Freitag
Department of Chemistry– Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorCorresponding Author
Dr. Wolfgang Tress
Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Search for more papers by this authorGraphical Abstract
A supramolecular iron complex is synthesized as dopant for the hole transport material spiro-MeOTAD. Employing this material in planar perovskite solar cells, the authors achieve a remarkable open-circuit voltage larger than 1.2 V at 1 sun and 1.27 V at 3 suns. This work contributes to engineering and minimizing the charge-carrier recombination at the interface between perovskite and hole transport layer.
Abstract
In perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5′-methyl-2,2′-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm−2) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc201800032-sup-0001-misc_information.pdf266.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 2H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
- 3B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Gratzel, L. Kloo, A. Hagfeldt, L. Sun, Energy Environ. 2016, 9, 873.
- 4N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
- 5M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 2016.
- 6M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
- 7J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316.
- 8Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy Environ. 2014, 7, 2619.
- 9M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
- 10O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Nat. Photonics 2014, 8, 128.
- 11J.-P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, A. Hagfeldt, Adv. Mater. Deerfield Beach Fla 2016, 28, 5031.
- 12E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Gratzel, A. Hagfeldt, J.-P. Correa-Baena, Energy Environ. 2016, 9, 3128.
- 13NREL Efficiency Chart.
- 14D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. C. Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2016, 2, e 1501170.
- 15M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy Environ. 2016, 9, 1989.
- 16G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. 2014, 7, 982.
- 17N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. Engl. 2014, 53, 3151.
- 18J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Gratzel, A. Hagfeldt, Energy Environ. 2017, 10, 710.
- 19S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341 LP.
- 20G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344 LP.
- 21Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Nat. Photonics 2015, 9, 106.
- 22A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nat. Phys. 2015, 11, 582.
- 23W. Tress, N. Marinova, O. Inganäs, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Graetzel, Adv. Energy Mater. 2015, 5, 140812.
- 24W. Tress, Adv. Energy Mater. 2017, 7, 1602358.
- 25J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Gratzel, A. Hagfeldt, Energy Environ. 2015, 8, 2928.
- 26J.-Y. Seo, T. Matsui, J. Luo, J.-P. Correa-Baena, F. Giordano, M. Saliba, K. Schenk, A. Ummadisingu, K. Domanski, M. Hadadian, A. Hagfeldt, S. M. Zakeeruddin, U. Steiner, M. Grätzel, A. Abate, Adv. Energy Mater. 2016, 6, 1600767.
- 27S. Albrecht, M. Saliba, J. P. Correa Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Gratzel, B. Rech, Energy Environ. 2016, 9, 81.
- 28L. Gil-Escrig, C. Momblona, M. Sessolo, H. J. Bolink, J. Mater. Chem. A 2016, 4, 3667.
- 29C. Momblona, L. Gil-Escrig, E. Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H. J. Bolink, Energy Environ. Sci. 2016, 9, 3456.
- 30F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang, L. Han, Energy Environ. Sci. 2017, 10, 1942.
- 31R. Sandoval-Torrientes, J. Pascual, I. García-Benito, S. Collavini, I. Kosta, R. Tena-Zaera, N. Martín, J. L. Delgado, ChemSusChem 2017, 10, 2023.
- 32J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, S. I. Seok, Adv. Mater. 2015, 27, 4013.
- 33N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Grätzel, Science 2017, eaam 5655.
- 34Z. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown, R. Jose, Nano Energy 2017, 34, 271.
- 35S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh, S. Il Seok, Science 2017, 356, 167 LP.
- 36U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 1998, 395, 583.
- 37J. H. Noh, N. J. Jeon, Y. C. Choi, M. K. Nazeeruddin, M. Gratzel, S. Il. Seok, J. Mater. Chem. A 2013, 1, 11842.
- 38A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M. E. Errico, J. Kirkpatrik, J. M. Ball, P. Docampo, I. McPherson, H. J. Snaith, Phys. Chem. Chem. Phys. 2013, 15, 2572.
- 39H. J. Snaith, M. Grätzel, Appl. Phys. Lett. 2006, 89.
- 40W. Gao, A. Kahn, J. Appl. Phys. 2003, 94.
- 41J. Meyer, S. Hamwi, S. Schmale, T. Winkler, H.-H. Johannes, T. Riedl, W. Kowalsky, J. Mater. Chem. 2009, 19, 702.
- 42Y. Qi, T. Sajoto, S. Barlow, E.-G. Kim, J.-L. Brédas, S. R. Marder, A. Kahn, J. Am. Chem. Soc. 2009, 131, 12530.
- 43J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2011, 133, 18042.
- 44J. Burschka, F. Kessler, E. Baranoff, M. K. Nazeeruddin, M. Graetzel, S. M. Zakeeruddin, A. Hagfeldt, M. Freitag, F. Giordano, Cobalt and/or copper complexes for use as hole transport layer dopants to improve optoelectronic or photoelectrochemical devices; 2016.
- 45J. Burschka, F. Kessler, M. K. Nazeeruddin, M. Grätzel, Chem. Mater. 2013, 25, 2986.
- 46J.-P. Correa-Baena, W. Tress, K. Domanski, E. H. Anaraki, S.-H. Turren-Cruz, B. Roose, P. P. Boix, M. Gratzel, M. Saliba, A. Abate, A. Hagfeldt, Energy Environ. 2017, 10, 1207.
- 47R. F. Beeston, S. L. Larson, M. C. Fitzgerald, Inorg. Chem. 1989, 28, 4187.
- 48K. D. Oyler, F. J. Coughlin, S. Bernhard, J. Am. Chem. Soc. 2006, 129, 210.
- 49M. Freitag, W. Yang, L. A. Fredin, L. D'Amario, K. M. Karlsson, A. Hagfeldt, G. Boschloo, ChemPhysChem 2016.
- 50T. Daeneke, T.-H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, L. Spiccia, Nat. Chem. 2011, 3, 211.
- 51M. Schmittel, H. Ammon, C. Wöhrle, Chem. Ber. 1995, 128, 845.
- 52S. M. Feldt, U. B. Cappel, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, J. Phys. Chem. C 2010, 114, 10551.
- 53B. Park, S. M. Jain, X. Zhang, A. Hagfeldt, G. Boschloo, T. Edvinsson, ACS Nano 2015, 9, 2088.
- 54Z. Song, J. Liu, G. Wang, W. Zuo, C. Liao, J. Mei, ChemPhysChem 2017, 18, 3030.
- 55P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen, A. Kahn, Energy Environ. 2014, 7, 1377.
- 56W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J. P. C. Baena, A. Hagfeldt, M. Graetzel, Energy Environ. Sci. 2018, 11, 151.
- 57W. Tress, K. Leo, M. Riede, Appl. Phys. Lett. 2013, 102, 163901.
- 58R. A. Belisle, P. Jain, R. Prasanna, T. Leijtens, M. D. McGehee, ACS Energy Lett. 2016, 1, 556.
- 59R. F. Beeston, W. S. Aldridge, J. A. Treadway, M. C. Fitzgerald, B. A. DeGraff, S. E. Stitzel, Inorg. Chem. 1998, 37, 4368.