Synthesis and Characterization of Surface-Active Ionic Liquids Used in the Disruption of Escherichia Coli Cells
Dr. Tânia E. Sintra
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorDr. Miguel Vilas
Department of Organic Chemistry Faculty of Chemistry, University of Vigo Marcosende, As Lagoas, 36310 Vigo, Spain
Search for more papers by this authorMargarida Martins
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorProf. Sónia P. M. Ventura
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorDr. Ana I. M. C. Lobo Ferreira
Department of Chemistry and Biochemistry CIQUP, Faculty of Sciences, University of Porto Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
Search for more papers by this authorProf. Luís M. N. B. F. Santos
Department of Chemistry and Biochemistry CIQUP, Faculty of Sciences, University of Porto Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
Search for more papers by this authorProf. Fernando J. M. Gonçalves
Department of Biology CESAM, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorProf. Emília Tojo
Department of Organic Chemistry Faculty of Chemistry, University of Vigo Marcosende, As Lagoas, 36310 Vigo, Spain
Search for more papers by this authorCorresponding Author
Prof. João A. P. Coutinho
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorDr. Tânia E. Sintra
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorDr. Miguel Vilas
Department of Organic Chemistry Faculty of Chemistry, University of Vigo Marcosende, As Lagoas, 36310 Vigo, Spain
Search for more papers by this authorMargarida Martins
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorProf. Sónia P. M. Ventura
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorDr. Ana I. M. C. Lobo Ferreira
Department of Chemistry and Biochemistry CIQUP, Faculty of Sciences, University of Porto Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
Search for more papers by this authorProf. Luís M. N. B. F. Santos
Department of Chemistry and Biochemistry CIQUP, Faculty of Sciences, University of Porto Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
Search for more papers by this authorProf. Fernando J. M. Gonçalves
Department of Biology CESAM, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorProf. Emília Tojo
Department of Organic Chemistry Faculty of Chemistry, University of Vigo Marcosende, As Lagoas, 36310 Vigo, Spain
Search for more papers by this authorCorresponding Author
Prof. João A. P. Coutinho
Department of Chemistry CICECO – Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Search for more papers by this authorGraphical Abstract
Ionic liquids as cell disruption agents: Twelve surface-active ionic liquids (SAILs) were synthesized and characterized in terms of their aggregation behavior, thermal properties and ecotoxicity. Additionally, due to their high surface activity, these ionic componds proved to be capable of promoting cell disruption of Escherichia coli and release of green fluorescent protein (GFP), produced intracellularly.
Abstract
Twelve surface-active ionic liquids (SAILs) and surface-active derivatives, based on imidazolium, ammonium, and phosphonium cations and containing one, or more, long alkyl chains in the cation and/or the anion, were synthetized and characterized. The aggregation behavior of these SAILs in water, as well as their adsorption at solution/air interface, were studied by assessing surface tension and conductivity. The CMC values obtained (0.03–6.0 mM) show a high propensity of these compounds to self-aggregate in aqueous media. Their thermal properties were also characterized, namely the melting point and decomposition temperature by using DSC and TGA, respectively. Furthermore, the toxicity of these SAILs was evaluated using the marine bacteria Aliivibrio fischeri (Gram-negative). According to the EC50 values obtained (0.3–2.7 mg L−1), the surface-active compounds tested should be considered “toxic” or “highly toxic”. Their ability to induce cell disruption of Escherichia coli cells (also Gram-negative), releasing the intracellular green fluorescent protein (GFP) produced, was investigated. The results clearly evidence the capability of these SAILs to act as cell disruption agents.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc201801127-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1U. Kragl, M. Eckstein, N. Kaftzik, Curr. Opin. Biotechnol. 2002, 13, 565–571.
- 2Z. Yang, W. Pan, Enzyme Microb. Technol. 2005, 37, 19–28.
- 3G.-R. Zhang, B. J. M. Etzold, J. Energy Chem. 2016, 25, 199–207.
- 4A. Chinnappan, C. Baskar, H. Kim, RSC Adv. 2016, 6, 63991–64002.
- 5G. G. Eshetu, M. Armand, H. Ohno, B. Scrosati, S. Passerini, Energy Environ. Sci. 2016, 9, 49–61.
- 6R. D. Rogers, K. R. Seddon, A. C. S. D. of Industrial, E. Chemistry, A. C. S. Meeting, Ionic Liquids: Industrial Applications for Green Chemistry, American Chemical Society, 2002.
- 7A. F. M. Claudio, M. C. Neves, K. Shimizu, J. N. Canongia Lopes, M. G. Freire, J. A. P. Coutinho, Green Chem. 2015, 17, 3948–3963.
- 8A. Pal, S. Yadav, Fluid Phase Equilib. 2016, 412, 71–78.
- 9V. Pino, C. Yao, J. L. Anderson, J. Colloid Interface Sci. 2009, 333, 548–556.
- 10N. M. Vaghela, N. V. Sastry, V. K. Aswal, Colloids Surf. A 2011, 373, 101–109.
- 11V. Fernández-Stefanuto, R. Corchero, I. Rodríguez-Escontrela, A. Soto, E. Tojo, ChemPhysChem 2018, 19, 2885–2893.
- 12S. Mandal, J. Kuchlyan, D. Banik, S. Ghosh, C. Banerjee, V. Khorwal, N. Sarkar, ChemPhysChem 2014, 15, 3544–3553.
- 13A. Klee, S. Prevost, M. Gradzielski, ChemPhysChem 2014, 15, 4032–4041.
- 14R. Dutta, S. Kundu, N. Sarkar, Biophys. Rev. 2018, 10, 861–871.
- 15J. Kuchlyan, N. Kundu, N. Sarkar, Curr. Opin. Colloid Interface Sci. 2016, 25, 27–38.
- 16I. Pacheco-Fernández, P. González-Hernández, V. Pino, J. H. Ayala, A. M. Afonso, in Ion. Liq. Devices (Ed.: ), 2017, pp. 53–78.
- 17M. Blesic, M. H. Marques, N. V. Plechkova, K. R. Seddon, L. P. N. Rebelo, A. Lopes, Green Chem. 2007, 9, 481–490.
- 18P. Mester, M. Wagner, P. Rossmanith, Sep. Purif. Technol. 2012, 97, 211–215.
- 19M. Martins, C. W. Ooi, M. C. Neves, J. F. Pereira, J. A. Coutinho, S. P. Ventura, J. Chem. Technol. Biotechnol. 2018, 93, 1864–1870.
- 20F. A. Vieira, R. J. R. Guilherme, M. C. Neves, A. Rego, M. H. Abreu, J. A. P. Coutinho, S. P. M. Ventura, Sep. Purif. Technol. 2018, 196, 300–308.
- 21J. Flieger, A. Siwek, M. Pizoń, A. Czajkowska-Żelazko, J. Sep. Sci. 2013, 36, 1530–1536.
- 22H. Qiu, Q. Zhang, L. Chen, X. Liu, S. Jiang, J. Sep. Sci. 2008, 31, 2791–2796.
- 23S. K. Wiedmer, A. W. T. King, M.-L. Riekkola, J. Chromatogr. A 2012, 1253, 171–176.
- 24A. H. Rageh, U. Pyell, J. Chromatogr. A 2013, 1316, 135–146.
- 25S. P. M. Ventura, L. D. F. Santos, J. A. Saraiva, J. A. P. Coutinho, Green Chem. 2012, 14, 1620–1625.
- 26V. Pino, M. Germán-Hernández, A. Martín-Pérez, J. L. Anderson, Sep. Sci. Technol. 2012, 47, 264–276.
- 27M. Germán-Hernández, V. Pino, J. L. Anderson, A. M. Afonso, J. Chromatogr. A 2012, 1227, 29–37.
- 28J. Łuczak, J. Hupka, J. Thöming, C. Jungnickel, Colloids Surf. A 2008, 329, 125–133.
- 29J. Sirieix-Plénet, L. Gaillon, P. Letellier, Talanta 2004, 63, 979–986.
- 30J. Bowers, C. P. Butts, P. J. Martin, M. C. Vergara-Gutierrez, R. K. Heenan, Langmuir 2004, 20, 2191–2198.
- 31Z. Miskolczy, K. Sebők-Nagy, L. Biczók, S. Göktürk, Chem. Phys. Lett. 2004, 400, 296–300.
- 32Q. Q. Baltazar, J. Chandawalla, K. Sawyer, J. L. Anderson, Colloids Surf. A 2007, 302, 150–156.
- 33N. A. Smirnova, E. A. Safonova, Russ. J. Phys. Chem. A 2010, 84, 1695–1704.
- 34O. Nacham, A. Martín-Pérez, D. J. Steyer, M. J. Trujillo-Rodríguez, J. L. Anderson, V. Pino, A. M. Afonso, Colloids Surf. A 2015, 469, 224–234.
- 35P. Brown, C. Butts, R. Dyer, J. Eastoe, I. Grillo, F. Guittard, S. Rogers, R. Heenan, Langmuir 2011, 27, 4563–4571.
- 36S. Engin Özdil, H. Akbaş, M. Boz, J. Chem. Eng. Data 2016, 61, 142–150.
- 37A. Al Muslim, D. Ayyash, S. S. Gujral, G. M. Mekhail, P. P. N. Rao, S. D. Wettig, P. Quagliotto, G. Donofrio, B. Różycka-Roszak, P. Misiak, Phys. Chem. Chem. Phys. 2017, 19, 1953–1962.
- 38A. Bhadani, M. Tani, T. Endo, K. Sakai, M. Abe, H. Sakai, Phys. Chem. Chem. Phys. 2015, 17, 19474–19483.
- 39A. B. Mirgorodskaya, L. Ya Zakharova, E. I. Khairutdinova, S. S. Lukashenko, O. G. Sinyashin, Colloids Surf. A 2016, 510, 33–42.
- 40C. Dai, S. Fang, M. Hu, X. He, M. Zhao, X. Wu, S. Yang, Y. Wu, J. Ind. Eng. Chem. 2017, 54, 226–233.
- 41V. Chauhan, R. Kamboj, S. P. Singh Rana, T. Kaur, G. Kaur, S. Singh, T. S. Kang, J. Colloid Interface Sci. 2015, 446, 263–271.
- 42I. Pacheco-Fernández, V. Pino, J. H. Ayala, A. M. Afonso, J. Chromatogr. A 2018, 1559, 102–111.
- 43R. Bouchal, A. Hamel, P. Hesemann, M. In, B. Prelot, J. Zajac, Int. J. Mol. Sci. 2016, 17, 223.
- 44M. Khiat, I. Pacheco-Fernández, V. Pino, T. Benabdallah, J. H. Ayala, A. M. Afonso, Anal. Methods 2018, 10, 1529–1537.
- 45A. B. Mirgorodskaya, S. S. Lukashenko, E. I. Yatskevich, N. V. Kulik, A. D. Voloshina, D. B. Kudryavtsev, A. R. Panteleeva, V. V. Zobov, L. Y. Zakharova, A. I. Konovalov, Prot. Met. Phys. Chem. Surfaces 2014, 50, 538–542.
- 46O. A. El Seoud, P. A. R. Pires, T. Abdel-Moghny, E. L. Bastos, J. Colloid Interface Sci. 2007, 313, 296–304.
- 47T. Inoue, H. Ebina, B. Dong, L. Zheng, J. Colloid Interface Sci. 2007, 314, 236–241.
- 48C. Jungnickel, J. Łuczak, J. Ranke, J. F. Fernández, A. Müller, J. Thöming, Colloids Surf. A 2008, 316, 278–284.
- 49“AZUR Environmental, MicrotoxOmniTM Software for Windows® 95/98/NT. Carlsbad, CA, U. S. A.,1999,” 1999.
- 50D. Liu, L. Ding, J. Sun, N. Boussetta, E. Vorobiev, Innov. Food Sci. Emerg. Technol. 2016, 36, 181–192.
- 51G. D. Peckham, R. C. Bugos, W. W. Su, Protein Expression Purif. 2006, 49, 183–189.
- 52C. Cabanne, A. M. Noubhani, A. Hocquellet, F. Dole, W. Dieryck, X. Santarelli, J. Chromatogr. B 2005, 818, 23–27.
- 53S. C. Lo, R. N. Ramanan, B. T. Tey, W. S. Tan, P. L. Show, T. C. Ling, C. W. Ooi, RSC Adv. 2016, 6, 62291–62297.
- 54M. Pérez-Rodríguez, G. Prieto, C. Rega, L. M. Varela, F. Sarmiento, V. Mosquera, Langmuir 1998, 14, 4422–4426.
- 55M. Ao, P. Huang, G. Xu, X. Yang, Y. Wang, Colloid Polym. Sci. 2009, 287, 395–402.
- 56G. B. Ray, I. Chakraborty, S. Ghosh, S. P. Moulik, R. Palepu, Langmuir 2005, 21, 10958–10967.
- 57R. Vanyúr, L. Biczók, Z. Miskolczy, Colloids Surf. A 2007, 299, 256–261.
- 58N. Azum, A. Z. Naqvi, M. Akram, Kabir-ud-Din, J. Chem. Eng. Data 2009, 54, 1518–1523.
- 59Y. Wei, F. Wang, Z. Zhang, C. Ren, Y. Lin, J. Chem. Eng. Data 2014, 59, 1120–1129.
- 60Kabir-ud-Din, G. Sharma, P. Ajmal Koya, J. Mol. Liq. 2014, 200, 145–152.
- 61M. J. Rosen, J. T. Kunjappu, Surfactants and Interfacial Phenomena, Wiley, 2012.
- 62R. Zana, Adv. Colloid Interface Sci. 2002, 97, 205–253.
- 63D. R. M. Passino, S. B. Smith, Environ. Toxicol. Chem. 1987, 6, 901–907.
- 64“EU, Environmental Hazards 10 March 2011,” can be found under http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev01/English/04e_part4.pdf.
- 65M. Lechuga, M. Fernández-Serrano, E. Jurado, J. Núñez-Olea, F. Ríos, Ecotoxicol. Environ. Saf. 2016, 125, 1–8.
- 66Y. Chen, M. Geurts, S. B. Sjollema, N. I. Kramer, J. L. M. Hermens, S. T. J. Droge, Environ. Toxicol. Chem. 2014, 33, 606–615.
- 67V. Di Nica, J. Gallet, S. Villa, V. Mezzanotte, Ecotoxicol. Environ. Saf. 2017, 142, 567–577.
- 68M. Cvjetko Bubalo, K. Radošević, I. Radojčić Redovniković, J. Halambek, V. Gaurina Srček, Ecotoxicol. Environ. Saf. 2014, 99, 1–12.
- 69M. Matzke, S. Stolte, K. Thiele, T. Juffernholz, J. Arning, J. Ranke, U. Welz-Biermann, B. Jastorff, Green Chem. 2007, 9, 1198–1207.
- 70S. P. M. Ventura, A. M. M. Gonçalves, T. E. Sintra, J. L. Pereira, F. Gonçalves, J. A. P. Coutinho, Ecotoxicology 2012, 22, 1–12.
- 71J. Ranke, K. Mölter, F. Stock, U. Bottin-Weber, J. Poczobutt, J. Hoffmann, B. Ondruschka, J. Filser, B. Jastorff, Ecotoxicol. Environ. Saf. 2004, 58, 396–404.
- 72P. J. Carvalho, S. P. M. Ventura, M. L. S. Batista, B. Schröder, F. Gonçalves, J. Esperança, F. Mutelet, J. A. P. Coutinho, J. Chem. Phys. 2014, 140, 064505.
- 73S. P. M. Ventura, A. M. M. Gonçalves, T. E. Sintra, J. L. Pereira, F. Gonçalves, J. A. P. Coutinho, Ecotoxicology 2013, 22, 1–12.
- 74B. Jing, N. Lan, J. Qiu, Y. Zhu, J. Phys. Chem. B 2016, 120, 2781–2789.
- 75J. Łuczak, C. Jungnickel, I. Łącka, S. Stolte, J. Hupka, Green Chem. 2010, 12, 593–601.
- 76J. D. Holbrey, W. M. Reichert, R. P. Swatloski, G. A. Broker, W. R. Pitner, K. R. Seddon, R. D. Rogers, Green Chem. 2002, 4, 407–413.
- 77C. M. Gordon, J. D. Holbrey, A. R. Kennedy, K. R. Seddon, J. Mater. Chem. 1998, 8, 2627–2636.
- 78J. Sun, M. Forsyth, D. R. MacFarlane, J. Phys. Chem. B 1998, 102, 8858–8864.
- 79C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson, Y. Zhou, Green Chem. 2003, 5, 143–152.
- 80S. Himmler, S. Hormann, R. van Hal, P. S. Schulz, P. Wasserscheid, Green Chem. 2006, 8, 887–894.
- 81H. F. D. Almeida, J. A. Lopes-da-Silva, M. G. Freire, J. A. P. Coutinho, J. Chem. Thermodyn. 2013, 57, 372–379.