A First-Principles Study of C3N Nanostructures: Control and Engineering of the Electronic and Magnetic Properties of Nanosheets, Tubes and Ribbons
Corresponding Author
Dr. Asadollah Bafekry
Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Search for more papers by this authorProf. Catherine Stampfl
School of Physics, The University of Sydney, New South Wales, 2006 Australia
Search for more papers by this authorProf. S. Farjami Shayesteh
Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
Search for more papers by this authorCorresponding Author
Dr. Asadollah Bafekry
Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Search for more papers by this authorProf. Catherine Stampfl
School of Physics, The University of Sydney, New South Wales, 2006 Australia
Search for more papers by this authorProf. S. Farjami Shayesteh
Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
Search for more papers by this authorGraphical Abstract
Ab initio calculations on the recently synthesized 2D material C3N in various nanostructures, including nanoribbons, nanotubes, nanosheets, and multilayers, show that the electronic and magnetic properties can be very diverse, and that by applying strain, an electric field, charging, and H-atom adsorption, these properties can be changed to induce a metallic, half-metallic, semiconducting, and magnetic behavior. This new family of C3N nanostructures may have potential applications in sensors, electronics, and optoelectronic technologies.
Abstract
Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3N nanoribbons, as well as the radius and length of C3N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc201900852-sup-0001-misc_information.pdf780.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, Wang, M. J. Bojdys, Nat. Rev. Mater. 2017, 2, 17030.
- 2J. Zhang, Y. Chen, X. Wang, Energy Environ. Sci. 2015, 8, 3092–3108.
- 3Q. Zhou, M. Wu, M. Zhang, G. Xu, B. Yao, Ch. Li, G. Shi, Mater. Today Energy 2017, 6, 181–188.
- 4S. U. Lee, R. V. Belosludov, H. Mizuseki, Y. Kawazoe, Small 2008, 5, 1769-1775.
- 5J. Li, W. Cui, Y. Sun, Y. Chu, W. Cen, F. Dong, J. Mater. Chem. A 2017, 5, 9358–9364.
- 6Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S. Z. Qiao, Energy Environ. Sci. 2012, 5, 6717–6731.
- 7J. Mahmood, E. K. Lee, M. Jung, D. Shin, I.-Y. Jeon, S.-M. Jung, H.-J. Choi, J.-M. Seo, S.-Y. Bae, S.-D. Sohn, N. Park, J. H. Oh, H.-J. Shin, J.-B. Baek, Nat. Commun. 2015, 6, 6486.
- 8B. Mortazavi, O. Rahaman, T. Rabczuk, L. F. C. Pereira Carbon 2016, 106, 1–8.
- 9G. Zhu, K.L. Q. Sun, Y. Kawazoe, P. Jena, Comput. Mater. Sci. 2014, 81, 275–279.
- 10X. Li, Sh. Zhang, Q. Wang, Phys. Chem. Chem. Phys. 2013, 15, 7142–7146.
- 11E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A. D. Norman, New J. Chem. 2002, 26, 508–512.
- 12A. J. Mannix, B. Kiraly, M. C. Hersam, N. P. Guisinger, Nat. Chem. Rev. 2017, 1, 0014.
- 13A. Du, S. Sanvito, S. C. Smith, Phys. Rev. Lett. 2012, 108, 197207.
- 14J. S. Lee, X. Wang, H. Luo, S. Dai, Adv. Mater. 2010, 22, 1004–1007.
- 15Q. Guo, Q. Yang, Ch. Yi, L. Zhu, Y. Xie, Carbon 2005, 43, 1386–1391.
- 16J. Li, Ch. Cao, J. Hao, H. Qiu, Y. Xu, H. Zhu, Diamond Relat. Mater. 2006, 15, 1593–1600.
- 17H. Qiu, Zh. Wang, X. Sheng, Phys. Lett. A. 2013, 377, 347–350.
- 18A. Wang, X. Zhang, M. Zhao, Nanoscale 2014, 6, 11157–11162.
- 19J. Wirth, R. Neumann, M. Antonietti, P. Saalfrank, Phys. Chem. Chem. Phys. 2014, 16, 15917–15926.
- 20X. Zhang, M. Zhao, A. Wang, X. Wang, A. Du, J. Mater. Chem. C 2013, 1, 6265–6270.
- 21X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2008, 8, 76.
- 22I. Choudhuri, G. Bhattacharyya, S. Kumar, B. Pathak, J. Mater. Chem. C 2016, 4, 11530–11539.
- 23A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Mller, R. Schlgl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893–4908.
- 24G. Algara-Siller, N. Severin, S. Y. Chong, T. Bjrkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. K. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, M. I. Bojdys, Angew. Chem. 2014, 126, 7580–7585;
10.1002/ange.201402191 Google ScholarAngew. Chem. Int. Ed. 2014, 53, 7450–7455.
- 25D. Mpoutas, L. Tsetseris, Phys. Chem. Chem. Phys. 2017, 19, 26743–26748.
- 26L. Tsetseris, Phys. Chem. Chem. Phys. 2016, 18, 26088–26093.
- 27L. Li, X. Kong, O. Leenaerts, X. Chen, B. Sanyal, F. M. Peeters, Carbon 2017, 118, 285–290.
- 28Ch. Pu, D. Zhou, Y. Li, H. Liu, Zh. Chen, Y. Wang, Y. Ma, Phys. Chem. C 2017, 121, 2669–2674.
- 29H. Chen, Sh. Zhang, W. Jiang, Ch. Zhang, H. Guo, Zh. Liu, Zh. Wang, F. Liu, X. Niu, J. Mater. Chem. A 2018, 6, 11252–11259.
- 30H. Li, H. Hu, Ch. Bao, J. Hua, H. Zhou, X. Liu, X. Liu, M. Zhao, Phys. Chem. Chem. Phys. 2015, 17, 6028–6035.
- 31X. Zhang, A. Wang, M. Zhao, Carbon 2015, 84, 1–8.
- 32L. Huang, Z. Liu, W. Chen, D. Cao, A. Zheng, J. Mater. Chem. A 2018, 6, 7168–7174.
- 33W. H. Brito, J. da Silva-Ara, H. Chacham, J. Phys. Chem. C 2015, 119, 19743–19751.
- 34L. Z. Liu, X.L. Wu, X. X. Liu, P. K. Chu, Phys. Lett. 2015, 106, 132406.
- 35H. Sahin, Phys. Rev. B 2015, 92, 085421.
- 36C. N. M. Ouma, K. O. Obodo, M. Braun, G. O. Amolo, J. Mater. Chem. C 2018, 6, 4015–4022.
- 37J. Mahmood, E. K. Lee, M. Jung, D. Shin, H.-J. Choi, J.-M. Seo, S.-M. Jung, D. Kim, F. Li, M. S. Lah, N. Park, H.-J. Shin, J. H. Oh, J.-B. Baek, PNAS 2016, 113, 7414.
- 38Q. Hu, Q. Wu, H. Wang, J. He, G. Zhang, physica status solidi 2011, 294, 784–788.
- 39S. Mizuno, M. Fujita, K. Nakao, Synth. Met. 1995, 71, 1869–1870.
- 40M. Yagmurcukardes, S. Horzum, E. Torun, F. M. Peeters, R. T. Senger, Phys. Chem. Chem. Phys. 2016, 18, 3144–3150.
- 41Y. Z. Abdullahi, T.L. Yoon, T.L. Lim, Mater. Res. Express 2019, 6, 025601.
- 42B. Mortazavi, Carbon 2017, 118, 25–34.
- 43M.-Y. Chang, Ch.-S. Wu, Y.-F. Chen, B.-Z. Hsieh, W.-Y. Huang, K.-Sh. Ho, T.-H. Hsieh, Y.-K. Han, Org. Elect. 2008, 9, 1136–1139.
- 44M. M. Alam, J. Wang, Y. Guo, S. P. Lee, H.-R. Tseng, J. Phys. Chem. B 2005, 109, 12777–12784.
- 45J. Xu, J. Mahmood, Y. Dou, Sh. Dou, F. Li, L. Dai, J. B. Baek, Adv. Mater. 2017, 29, 1702007.
- 46A. Bafekry, S. Farjami Shayesteh, F. M. Peeters, Phys. Chem. C 2019, 123, 12485.
- 47M. B. Tagani, S. I. Vishkayi, Appl. Phys. 2018, 124, 084304.
- 48A. Bafekry, M. Ghergherehchi, S. Farjami Shayesteh, F. M. Peeters, Chem. Phys. 2019, 526, 110442.
- 49M. B. Tagani, Comput. Mater. Sci. 2018, 153, 126–133.
- 50A. Bafekry, C. Stampfl, S. Farjami Shayesteh, F. M. Peeters, Adv. Elec. Mater. 2019, 1900459.
- 51Z. Wu, H. Zhang, J. Lin, J. Zhao, X. Cheng, Chem. Phys. 2020, 528, 110471.
- 52A. Bafekry, S. Farjami Shayesteh, F. M. Peeters, Phys. Chem. Chem. Phys. 2019, 21, 21070.
- 53Z. Golsanamlou, M. B. Tagani, H. R. Soleimani, Phys. Chem. Chem. Phys. 2015, 17, 13466–13471.
- 54A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191.
- 55H. Guo, N. Lu, J. Dai, X. Wu, X. C. Zeng, J. Phys. Chem. C 2014, 118, 14051–14059.
- 56P. F. Yuan, Z. Q. Fan, Z. H. Zhang, Carbon 2017, 124, 228–237.
- 57B. Akgenc, Comput. Mater. Sci. 2020, 171, 109231.
- 58A. Bafekry, M. Ghergherehchi, S. Farjami Shayesteh, Phys. Chem. Chem. Phys. 2019, 21, 10552.
- 59M. Yagmurcukardes, F. M. Peeters, R. T. Senger, H. Sahin, Appl. Phys. Rev. 2016, 3, 041302.
- 60Y. Xie, C. Gong, J. Zhou, X. Yan, Y. Chen, Appl. Phys. Lett. 2019, 115, 073105
- 61A. Bafekry, M. Ghergherehchi, S. Farjami Shayesteh, F. M. Peeters, Appl. Phys. 2019, 126, 144304.
- 62B. Akgenc, J. Mater. Sci. 2019, 54, 95439552
- 63D. Kiymaz, M. Yagmurcukardes, A. Tomak, H. Sahin, R. T. Senger, F. M. Peeters, H. M. Zareie, C. Zafer, Nanotechnology 2016, 27, 455604.
- 64A. Bafekry, B. Mortazavi, S. Farjami Shayesteh, J. Magn. Magn. Mater. 2019, 491, 165565.
- 65B. Akgenc, Solid State Commun. 2019, 303–304, 113739.
- 66A. Bafekry, C. Stampfl, M. Ghergherehchi, S. Farjami Shayesteh, Carbon 2020, 118, 371–384.
- 67M. Yagmurcukardes, Phys. Rev. B 2019, 100, 024108.
- 68A. Bafekry, B. Akgenc, S. Farjami Shayesteh, B. Mortazavi, Appl. Surf. Sci. 2019, 144450.
10.1016/j.apsusc.2019.144450 Google Scholar
- 69J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 70N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993–2006.
- 71T. Ozaki, Phys. Rev. B 2003, 67, 155108.
- 72T. Ozaki, H. Kino, Phys. Rev. B 2004, 69, 195113.
- 73H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.
- 74J. Tersoff, D. R. Hamann, Phys. Rev. Lett. 1983, 50, 1998–2001.
- 75I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gmez-Herrero, A. M. Baro, Rev. Sci. Instrum. 2007, 78, 013705.
- 76P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris Guido Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch. J. Physics: Condensed Matter 2009, 21, 395502.
- 77H. J. Xiang, B. Huang, Z. Y. Li, S.-H. Wei, J.L. Yang, X. G. Gong, Phys. Rev. X 2012, 2, 011003.
- 78W. Li, X. Dai, J. Morrone, G. Zhang, R. Zhou, Nanoscale 2017, 9, 12025–12031.
- 79L.-B. Shi, Y.-Y. Zhang, X.-M. Xiu, H.-K. Dong, Carbon 2018, 134, 103–111.
- 80S. Azevedo, M. Machado, J. R. Kaschny, Appl. Phys. A 2011, 104, 55–60.
- 81Z. Huang, F. Li, B. Chen, G. Yuan, RSC Adv., 2015, 5, 102700–102706.
- 82X. Wang, C. Zhou, R. Shi, Q. Liu, G. I. N. Waterhouse, L. Wu, C.-H. Tung, T. Zhang, Nano Res., 2019, 12, 2385–2389.
- 83R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. Ajayan, Nano Lett. 2001, 1, 457–460.
- 84J. Hales, A. S. Barnard, J. Phys. Condens. Matter 2009, 21, 144203–144207.
- 85E. Kim, C. Chen, T. Kahler, M. Elstner, T. Frauenheim, Phys. Rev. B 2001, 64, 094107.
- 86A. Sandre, C. J. Pickard, C. Colliex, Chem. Phys. Lett. 2000, 325, 53–60.
- 87S. Azevedo, R. De Paiva, Europhys. Lett. 2006, 75, 126.
- 88S. Jalili, F. Molani, M. Akhavan, J. Schofield, Phys. E 2014, 56, 48–54.
- 89Z. Bagheri, Phys. E 2016, 76, 151–157.
- 90M. Pashangpour, A. A. Peyghan, J. Mol. Model. 2015, 21, 116.
- 91Z. Rostami, A. Bodaghi, J. Mol. Liq. 2016, 220, 687–692.
- 92F. Molani, S. Jalili, J. Schofield, Hydrogen Energy 2016, 41, 7431–7437.
- 93M. Eslami, M. Moradi, R. Moradi, Vacuum 2016, 133, 7–12.