Digital Imaging-based Colourimetry for Enzymatic Processes in Transparent Liquid Marbles
Nhat-Khuong Nguyen
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorPradip Singha
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorDr. Jun Zhang
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorDr. Hoang-Phuong Phan
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorCorresponding Author
Prof. Nam-Trung Nguyen
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorCorresponding Author
Dr. Chin Hong Ooi
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorNhat-Khuong Nguyen
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorPradip Singha
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorDr. Jun Zhang
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorDr. Hoang-Phuong Phan
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorCorresponding Author
Prof. Nam-Trung Nguyen
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorCorresponding Author
Dr. Chin Hong Ooi
Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111 Queensland, Australia
Search for more papers by this authorGraphical Abstract
Monitoring enzymatic reactions: This paper presents a non-destructive and in situ digital-imaging colourimetry-based method for monitoring enzymatic hydrolysis of starch in transparent liquid marbles. This method shows high sensitivity and repeatability, greatly enhancing the potential of liquid marble-based microreactor platform.
Abstract
Liquid marbles are a promising microreactor platform that recently attracts significant research interest owing to their ability to accommodate a wide range of micro reactions. However, the use of destructive and ex-situ methods to monitor reactions impairs the potential of liquid-marble-based microreactors. This paper proposes a non-destructive, in situ, and cost-effective digital-imaging-based colourimetric monitoring method for transparent liquid marbles, using the enzymatic hydrolysis of starch as an illustrative example. The colourimetric reaction between starch and iodine produces a complex that exhibits a dark blue colour. We found that the absorbance of red channel of digital images showed a linear relationship with starch concentration with high sensitivity and repeatability. This digital-imaging-based colourimetric method was used to study the hydrolysis of starch by α-amylase. The results show high accuracy and applicability of first-order kinetics for this reaction. The demonstration of digital-imaging-based colourimetry indicates the potential of liquid marble-based microreactors.
Conflict of interest
The authors declare no conflict of interest.
References
- 1Y. Wen, X. Wang, H. Wei, B. Li, P. Jin, L. Li, Green Chem. 2012, 14, 2868–2875.
- 2A. Corma, C. Martínez, F. Melo, L. Sauvanaud, J. Carriat, Appl. Catal. A 2002, 232, 247–263.
- 3V. Shvets, V. Sapunov, R. Kozlovskiy, A. Luganskiy, A. Gorbunov, F. Sovetin, T. Gartman, Chem. Eng. J. 2017, 329, 275–282.
- 4A. Tanimu, S. Jaenicke, K. Alhooshani, Chem. Eng. J. 2017, 327, 792–821.
- 5P. Watts, S. J. Haswell, Chem. Soc. Rev. 2005, 34, 235–246.
- 6J. I. Yoshida, A. Nagaki, T. Yamada, Chem. Eur. J. 2008, 14, 7450–7459.
- 7A. J. Demello, Nature 2006, 442, 394–402.
- 8B. Su, S. Wang, Y. Song, L. Jiang, Nano Res. 2011, 4, 266–273.
- 9S. J. Haswell, P. Watts, Green Chem. 2003, 5, 240–249.
- 10P. T. Baraldi, V. Hessel, Green Process. Synth. 2012, 1, 149–167.
- 11P. Watts, C. Wiles, J. Chem. Res. 2012, 36, 181–193.
- 12Y.-F. Yap, S.-H. Tan, N.-T. Nguyen, S. S. Murshed, T.-N. Wong, L. Yobas, J. Phys. D 2009, 42, 065503.
- 13P. Aussillous, D. Quéré, Nature 2001, 411, 924–927.
- 14P. Singha, C. H. Ooi, N.-K. Nguyen, K. R. Sreejith, J. Jin, N.-T. Nguyen, Microfluid. Nanofluid. 2020, 24, 1–15.
- 15C. H. Ooi, N.-T. Nguyen, Microfluid. Nanofluid. 2015, 19, 483–495.
- 16J. Jin, C. H. Ooi, K. R. Sreejith, D. V. Dao, N.-T. Nguyen, Phys. Rev. Appl. 2019, 11, 044059.
- 17C. H. Ooi, J. Jin, A. V. Nguyen, G. M. Evans, N.-T. Nguyen, Microfluid. Nanofluid. 2018, 22, 142.
- 18X. Fu, Y. Zhang, H. Yuan, B. P. Binks, H. C. Shum, ACS Appl. Mater. Interfaces 2018, 10, 34822–34827.
- 19Y. Zhang, X. Fu, W. Guo, Y. Deng, B. P. Binks, H. C. Shum, Lab Chip 2019, 19, 3526–3534.
- 20M. K. Khaw, C. H. Ooi, F. Mohd-Yasin, A. V. Nguyen, G. M. Evans, N.-T. Nguyen, Microfluid. Nanofluid. 2017, 21, 1–12.
10.1007/s10404-017-1945-0 Google Scholar
- 21M. K. Khaw, C. H. Ooi, F. Mohd-Yasin, R. Vadivelu, J. St John, N.-T. Nguyen, Lab Chip 2016, 16, 2211–2218.
- 22M. Frenkel, V. Danchuk, V. Multanen, I. Legchenkova, Y. Bormashenko, O. Gendelman, E. Bormashenko, Langmuir 2018, 34, 6388–6395.
- 23C. H. Ooi, A. Van Nguyen, G. M. Evans, O. Gendelman, E. Bormashenko, N.-T. Nguyen, RSC Adv. 2015, 5, 101006–101012.
- 24E. Bormashenko, Y. Bormashenko, R. Grynyov, H. Aharoni, G. Whyman, B. P. Binks, J. Phys. Chem. C 2015, 119, 9910–9915.
- 25N. Kavokine, M. Anyfantakis, M. Morel, S. Rudiuk, T. Bickel, D. Baigl, Angew. Chem. Int. Ed. 2016, 55, 11183–11187;
Angew. Chem. 2016, 128, 11349–11353.
10.1002/ange.201603639 Google Scholar
- 26B. Solomon, in Advances in Biochemical Engineering, Volume 10, Springer, 1978, pp. 131–177.
- 27S. L. Hii, J. S. Tan, T. C. Ling, A. B. Ariff, Enzyme Res. 2012, 2012.
- 28M. W. Kearsley, S. Z. Dziedzic, Handbook of starch hydrolysis products and their derivatives, Springer Science & Business Media, 1995.
10.1007/978-1-4615-2159-4 Google Scholar
- 29B. E. Haissig, R. E. Dickson, Physiol. Plant. 1979, 47, 151–157.
- 30P. S. Chow, S. M. Landhäusser, Tree Physiol. 2004, 24, 1129–1136.
- 31Y. Higuchi, A. Ohashi, H. Imachi, H. Harada, Water Sci. Technol. 2005, 52, 259–266.
- 32U. Etxeberria, A. L. de la Garza, J. Campión, J. A. Martinez, F. I. Milagro, Expert Opin. Ther. Targets 2012, 16, 269–297.
- 33D. Yankov, E. Dobreva, V. Beschkov, E. Emanuilova, Enzyme Microb. Technol. 1986, 8, 665–667.
- 34V. Komolprasert, R. Y. Ofoli, J. Chem. Technol. 1991, 51, 209–223.
- 35H. Hargono, B. Jos, B. Budiyono, S. Sumardiono, S. Priyanto, K. Haryani, M. Zakaria, in AIP Conference Proceedings, Vol. 2197, AIP Publishing LLC, 2020, p. 120001.
- 36V. Ernest, P. Shiny, A. Mukherjee, N. Chandrasekaran, Carbohydr. Res. 2012, 352, 60–64.
- 37K. Nakagawa, Y. Goto, Chem. Eng. Process. 2015, 91, 35–42.
- 38T. Kochanė, I. Zabarauskė, L. Klimkevičienė, A. Strakšys, S. Mačiulytė, L. Navickaitė, S. Gailiūnaitė, S. Budrienė, Int. J. Biol. Macromol. 2020, 144, 544–552.
- 39S. Wang, X. Huang, C. Yang, Lab Chip 2011, 11, 2081–2087.
- 40H. Masuda, T. Horie, R. Hubacz, N. Ohmura, M. Shimoyamada, Biosci. Biotechnol. Biochem. 2017, 81, 755–761.
- 41Y.-E. Miao, H. K. Lee, W. S. Chew, I. Y. Phang, T. Liu, X. Y. Ling, Chem. Commun. 2014, 50, 5923–5926.
- 42W. Gao, H. K. Lee, J. Hobley, T. Liu, I. Y. Phang, X. Y. Ling, Angew. Chem. 2015, 127, 4065–4068;
10.1002/ange.201412103 Google ScholarAngew. Chem. Int. Ed. 2015, 54, 3993–3996.
- 43E. Sato, M. Yuri, S. Fujii, T. Nishiyama, Y. Nakamura, H. Horibe, Chem. Commun. 2015, 51, 17241–17244.
- 44Y. Zhao, Z. Xu, H. Niu, X. Wang, T. Lin, Adv. Funct. Mater. 2015, 25, 437–444.
- 45C. S. L. Koh, H. K. Lee, G. C. Phan-Quang, X. Han, M. R. Lee, Z. Yang, X. Y. Ling, Angew. Chem. 2017, 129, 8939–8943;
10.1002/ange.201704433 Google ScholarAngew. Chem. Int. Ed. 2017, 56, 8813–8817.
- 46N. M. Oliveira, C. R. Correia, R. L. Reis, J. F. Mano, Adv. Healthcare Mater. 2015, 4, 264–270.
- 47H. Li, P. Liu, G. Kaur, X. Yao, M. Yang, Adv. Healthcare Mater. 2017, 6, 1700185.
- 48S. K. Kohl, J. D. Landmark, D. F. Stickle, J. Chem. Educ. 2006, 83, 644.
- 49E. da Nobrega Gaiao, V. L. Martins, W. da Silva Lyra, L. F. de Almeida, E. C. da Silva, M. C. U. Araújo, Anal. Chim. Acta 2006, 570, 283–290.
- 50W. Wongwilai, S. Lapanantnoppakhun, S. Grudpan, K. Grudpan, Talanta 2010, 81, 1137–1141.
- 51A. Choodum, N. Nic Daeid, Drug Test Anal. 2011, 3, 277–282.
- 52M. B. Lima, S. I. E. Andrade, I. S. Barreto, L. F. Almeida, M. C. U. Araújo, Microchem. J. 2013, 106, 238–243.
- 53R. W. Ricci, M. Ditzler, L. P. Nestor, J. Chem. Educ. 1994, 71, 983.
- 54D. J. Soldat, P. Barak, B. J. Lepore, J. Chem. Educ. 2009, 86, 617.
- 55K. D. Pessoa, W. T. Suarez, M. F. dos Reis, M. d. O. K. Franco, R. P. L. Moreira, V. B. dos Santos, Spectrochim. Acta Part A 2017, 185, 310–316.
- 56J. Wang, Y. Li, Y. Tian, X. Xu, X. Ji, X. Cao, Z. Jin, Starke 2010, 62, 508–516.
- 57A. Choodum, P. Kanatharana, W. Wongniramaikul, N. N. Daeid, Talanta 2013, 115, 143–149.
- 58C. H. Ooi, E. Bormashenko, A. V. Nguyen, G. M. Evans, D. V. Dao, N.-T. Nguyen, Langmuir 2016, 32, 6097–6104.
- 59K. R. Sreejith, C. H. Ooi, D. V. Dao, N.-T. Nguyen, RSC Adv. 2018, 8, 15436–15443.
- 60B. Laborie, F. Lachaussée, E. Lorenceau, F. Rouyer, Soft Matter 2013, 9, 4822–4830.
- 61A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, M. Unser, Colloids Surf. A 2010, 364, 72–81.
- 62L. Ma-Hock, A. Gamer, R. Landsiedel, E. Leibold, T. Frechen, B. Sens, M. Linsenbuehler, B. Van Ravenzwaay, Inhalation Toxicol. 2007, 19, 833–848.
- 63M. Shankar, R. Priyadharshini, P. Gunasekaran, Biotechnol. Lett. 2009, 31, 1197–1201.
- 64L. P. dos Santos Benedetti, V. B. dos Santos, T. A. Silva, E. Benedetti Filho, V. L. Martins, O. Fatibello-Filho, Anal. Methods 2015, 7, 4138–4144.
- 65N.-K. Nguyen, C. H. Ooi, P. Singha, J. Jin, K. R. Sreejith, H.-P. Phan, N.-T. Nguyen, Processes 2020, 8, 793.
- 66S. Dhital, A. K. Shrestha, M. J. Gidley, Carbohydr. Polym. 2010, 82, 480–488.
- 67A. Párkány-Gyárfás, L. Vámos-Vigyázó, Starke 1979, 31, 328–332.
- 68P. K. Robinson, Essays Biochem. 2015, 59, 1–41.
- 69R. Visvanathan, C. Jayathilake, R. Liyanage, Food Chem. 2016, 211, 853–859.