Enhanced Nanostructure Dynamics on Au(111) with Adsorbed Sulfur due to Au−S Complex Formation
Dr. Peter M. Spurgeon
Department of Chemistry, Iowa State University, Ames, Iowa, 50011 USA
Search for more papers by this authorDr. Da-Jiang Liu
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Search for more papers by this authorProf. Theresa L. Windus
Department of Chemistry, Iowa State University, Ames, Iowa, 50011 USA
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Search for more papers by this authorCorresponding Author
Prof. James W. Evans
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Department of Physics & Astronomy, Iowa State University, Ames, Iowa, 50011 USA
Search for more papers by this authorProf. Patricia A. Thiel
Department of Chemistry, Iowa State University, Ames, Iowa, 50011 USA
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa, 50011 USA
Deceased
Search for more papers by this authorDr. Peter M. Spurgeon
Department of Chemistry, Iowa State University, Ames, Iowa, 50011 USA
Search for more papers by this authorDr. Da-Jiang Liu
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Search for more papers by this authorProf. Theresa L. Windus
Department of Chemistry, Iowa State University, Ames, Iowa, 50011 USA
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Search for more papers by this authorCorresponding Author
Prof. James W. Evans
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Department of Physics & Astronomy, Iowa State University, Ames, Iowa, 50011 USA
Search for more papers by this authorProf. Patricia A. Thiel
Department of Chemistry, Iowa State University, Ames, Iowa, 50011 USA
Ames Laboratory – USDOE, Ames, Iowa, 50011 USA
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa, 50011 USA
Deceased
Search for more papers by this authorGraphical Abstract
Moving faster: Decay of 2D Au islands on Au(111) is enhanced by Au−S complex-mediated mass transport in the presence of S.
Abstract
Chemisorbed species can enhance the fluxional dynamics of nanostructured metal surfaces which has implications for applications such as catalysis. Scanning tunneling microscopy studies at room temperature reveal that the presence of adsorbed sulfur (S) greatly enhances the decay rate of 2D Au islands in the vicinity of extended step edges on Au(111). This enhancement is already significant at S coverages, θS, of a few hundredths of a monolayer (ML), and is most pronounced for 0.1–0.3 ML where the decay rate is increased by a factor of around 30. For θS close to saturation at about 0.6 ML, sulfur induces pitting and reconstruction of the entire surface, and Au islands are stabilized. Enhanced coarsening at lower θS is attributed to the formation and diffusion across terraces of Au−S complexes, particularly AuS2 and Au4S4, with some lesser contribution from Au3S4. This picture is supported by density functional theory analysis of complex formation energies and diffusion barriers.
Conflict of interest
The authors declare no conflicts of interests.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc202000884-sup-0001-misc_information.pdf797.9 KB | Supplementary |
cphc202000884-sup-0001-SI_movie.mp4509.7 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, H. Topsøe, Science 2002, 295, 2053–2055.
- 2M. M. Biener, J. Biener, C. M. Friend, Langmuir 2005, 21, 1668–1671.
- 3F. Tao, S. Dag, L. W. Wang, Z. Liu, D. R. Butcher, H. Bluhm, M. Salmeron, G. A. Somorjai, Science 2010, 327, 850–853.
- 4J. W. Evans, P. A. Thiel, Science 2010, 330, 559–559.
- 5S. Zhang, P. N. Plessow, J. J. Willis, S. Dai, M. Xu, G. W. Graham, M. Cargnello, F. Abild-Pedersen, X. Pan, Nano Lett. 2016, 16, 4528–4534.
- 6K. F. Kalz, R. Kraehnert, M. Dvoyashkin, R. Dittmeyer, R. Glaser, U. Krewer, K. Reuter, J. D. Grunwaldt, ChemCatChem 2017, 9, 17–29.
- 7Basic Research Needs (BRN) Workshop for Catalysis Science to Transform Energy Technologies, DOE BES, 2017, https://science.osti.gov/-/media/bes/pdf/reports/2017/BRN-Catalysis_factual_doc.pdf.
- 8P. J. F. Harris, Int. Mater. Rev. 1995, 40, 97–115.
- 9W. L. Ling, N. C. Bartelt, K. Pohl, J. de la Figuera, R. Q. Hwang, K. F. McCarty, Phys. Rev. Lett. 2004, 93, 166101.
- 10P. A. Thiel, M. M. Shen, D.-J. Liu, J. W. Evans, J. Vac. Sci. Technol. A 2010, 28, 1285–1298.
- 11P. Maksymovych, O. Voznyy, D. B. Dougherty, D. C. Sorescu, J. T. Yates, Prog. Surf. Sci. 2010, 85, 206–240.
- 12C. Vericat, M. E. Vela, G. Benitez, P. Carro, R. C. Salvarezza, Chem. Soc. Rev. 2010, 39, 1805–1834.
- 13F. P. Zamborini, R. M. Crooks, Langmuir 1998, 14, 3279–3286.
- 14B. K. Min, A. R. Alemozafar, M. M. Biener, J. Biener, C. M. Friend, Top. Catal. 2005, 36, 77–90.
- 15G. Pieters, L. J. Prins, New J. Chem. 2012, 36, 1931–1939.
- 16J. A. Rodriguez, J. Dvorak, T. Jirsak, G. Liu, J. Hrbek, Y. Aray, J. Am. Chem. Soc. 2003, 125, 276–285.
- 17M. M. Biener, J. Biener, C. M. Friend, Surf. Sci. 2007, 601, 1659–1667.
- 18M. Yu, H. Ascolani, G. Zampieri, D. P. Woodruff, C. J. Satterley, R. G. Jones, V. R. Dhanak, J. Phys. Chem. C 2007, 111, 10904–10914.
- 19S. Kurokawa, Y. Miyawaki, A. Sakai, Jpn. J. Appl. Phys. 2009, 48, 08JB12.
- 20G. M. McGuirk, H. Shin, M. Caragiu, S. Ash, P. K. Bandyopadhyay, R. H. Prince, R. D. Diehl, Surf. Sci. 2013, 610, 42–47.
- 21P. N. Abufager, G. Zampieri, K. Reuter, M. L. Martiarena, H. F. Busnengo, J. Phys. Chem. C 2014, 118, 290–297.
- 22H. Walen, D.-J. Liu, J. Oh, H. Lim, J. W. Evans, Y. Kim, P. A. Thiel, J. Chem. Phys. 2015, 143, 014704.
- 23D.-J. Liu, J. Lee, T. L. Windus, P. A. Thiel, J. W. Evans, Surf. Sci. 2018, 676, 2–8.
- 24D.-J. Liu, J. W. Evans, P. M. Spurgeon, P. A. Thiel, J. Chem. Phys. 2020, 152, 224706.
- 25I. Touzov, C. B. Gorman, Langmuir 1997, 13, 4850–4854.
- 26H. Walen, D.-J. Liu, J. Oh, H. Lim, J. W. Evans, C. M. Aikens, Y. Kim, P. A. Thiel, Phys. Rev. B 2015, 91, 045426.
- 27M. M. Shen, D.-J. Liu, C. J. Jenks, P. A. Thiel, J. W. Evans, J. Chem. Phys. 2009, 130, 194701.
- 28S. M. Russell, Y. Kim, D.-J. Liu, J. W. Evans, P. A. Thiel, J. Chem. Phys. 2013, 138, 071101.
- 29K. C. Lai, Y. Han, P. Spurgeon, W. Huang, P. A. Thiel, D.-J. Liu, J. W. Evans, Chem. Rev. 2019, 119, 6670–6768.
- 30W. Heegemann, K. H. Meister, E. Bechtold, K. Hayek, Surf. Sci. 1975, 49, 161–180.
- 31D. Detry, J. Drowart, P. Goldfing, H. Keller, H. Rickert, Zeitschrift Fur Physikalische Chemie-Frankfurt 1967, 55, 314–320.
- 32C. Wagner, J. Chem. Phys. 1953, 21, 1819–1827.
- 33G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558–561.
- 34G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251–14269.
- 35J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 36J. Lee, T. L. Windus, P. A. Thiel, J. W. Evans, D.-J. Liu, J. Phys. Chem. C 2019, 123, 12954–12965.
- 37G. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978–9985.
- 38P. M. Spurgeon, K. C. Lai, Y. Han, J. W. Evans, P. A. Thiel, J. Phys. Chem. C 2020, 124, 7492–7499.
- 39K. Morgenstern, G. Rosenfeld, G. Comsa, Phys. Rev. Lett. 1996, 76, 2113–2116.
- 40G. S. Icking-Konert, M. Giesen, H. Ibach, Surf. Sci. 1998, 398, 37–48.
- 41P. A. Thiel, M. M. Shen, D.-J. Liu, J. W. Evans, J. Phys. Chem. C 2009, 113, 5047–5067.
- 42Y. B. Liu, D. Y. Sun, X. G. Gong, Surf. Sci. 2002, 498, 337–342.
- 43G. Antczak, G. Ehrlich, Surface diffusion: Metals, metal atoms, and clusters. Cambridge University Press, Cambridge, 2010.
10.1017/CBO9780511730320 Google Scholar
- 44P. J. Feibelman, Phys. Rev. Lett. 2000, 85, 606–609.
- 45P. M. Spurgeon, D.-J. Liu, J. Oh, Y. Kim, P. A. Thiel, Sci. Rep., 2019, 9, 19842.
- 46D. R. Peale, B. H. Cooper, J. Vac. Sci. Technol. A 1992, 10, 2210–2215.
- 47M. M. Shen, S. M. Russell, D.-J. Liu, P. A. Thiel, J. Chem. Phys. 2011, 135, 154701.
- 48P. M. Spurgeon, D.-J. Liu, H. Walen, J. Oh, H. J. Yang, Y. Kim, P. A. Thiel, Phys. Chem. Chem. Phys. 2019, 21, 10540–10551.
- 49H. Walen, D.-J. Liu, J. Oh, H. J. Yang, P. M. Spurgeon, Y. Kim, P. A. Thiel, J. Phys. Chem. B 2018, 122, 963–971.
- 50D.-J. Liu, P. M. Spurgeon, J. Lee, T. L. Windus, P. A. Thiel, J. W. Evans, Phys. Chem. Chem. Phys. 2019, 21, 26483–26491.