Hofmeister Effects of Group II Cations as Seen in the Unfolding of Ribonuclease A
Iman Asakereh
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorKatherine Lee
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorOlga A. Francisco
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorCorresponding Author
Prof. Mazdak Khajehpour
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2 N2 Winnipeg, Manitoba, Canada
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorIman Asakereh
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorKatherine Lee
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorOlga A. Francisco
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorCorresponding Author
Prof. Mazdak Khajehpour
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2 N2 Winnipeg, Manitoba, Canada
Department of Chemistry, University of Manitoba, 468 Parker Bldg., 144 Dysart Rd., R3T 2N2 Winnipeg, Manitoba, Canada
Search for more papers by this authorGraphical Abstract
Group II cations affect protein folding through two important modalities: (top) promote protein folding by enhancing the hydrophobic effect through reduction of solvent void volume; (bottom) promote protein unfolding by forming contact pairs with amide carbonyls that help solubilize the protein amide backbone.
Abstract
This work studies the effects of alkaline-earth cation addition on the unfolding free energy of a model protein, pancreatic Ribonuclease A (RNase A) by differential scanning calorimetry analysis. RNase A was chosen because: a) it does not specifically bind Mg2+, Ca2+ and Sr2+ cations and b) maintains its structural integrity throughout a large pH range. We have measured and compared the effects of NaCl, MgCl2, CaCl2 and SrCl2 addition on the melting point of RNase A. Our results show that even though the addition of group II cations to aqueous solvent reduces the solubility of nonpolar residues (and enhances the hydrophobic effect), their interactions with the amide moieties are strong enough to “salt-them-in” the solvent, thereby causing an overall protein stability reduction. We demonstrate that the amide-cation interactions are a major contributor to the observed “Hofmeister Effects” of group II cations in protein folding. Our analysis suggests that protein folding “Hofmeister Effects” of group II cations, are mostly the aggregate sum of how cation addition simultaneously salts-out hydrophobic moieties by increasing the cavitation free energy, while promoting the salting-in of amide moieties through contact pair formation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cphc202100884-sup-0001-misc_information.pdf261.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Kunz, P. Lo Nostro, B. W. Ninham, Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18;
- 1bP. Lo Nostro, B. W. Ninham, Chem. Rev. (Washington, D. C.) 2012, 112, 2286–2322;
- 1cP. Jungwirth, P. S. Cremer, Nat. Chem. 2014, 6, 261–263.
- 2K. D. Collins, Biophys. J. 1997, 72, 65–76.
- 3H. I. Okur, J. Hladílková, K. B. Rembert, Y. Cho, J. Heyda, J. Dzubiella, P. S. Cremer, P. Jungwirth, J. Phys. Chem. B 2017, 121, 1997–2014.
- 4N. Schwierz, D. Horinek, U. Sivan, R. R. Netz, Curr. Opin. Colloid Interface Sci. 2016, 23, 10–18.
- 5
- 5aW. F. McDevit, F. A. Long, J. Am. Chem. Soc. 1952, 74, 1773–1777;
- 5bY. Marcus, J. Mol. Liq. 2013, 177, 7–10.
- 6
- 6aO. A. Francisco, H. M. Glor, M. Khajehpour, ChemPhysChem. 2020, 21, 484–493;
- 6bH. Katsuto, R. Okamoto, T. Sumi, K. Koga, J. Phys. Chem. B 2021, 125, 6296–6305.
- 7P. Ball, J. E. Hallsworth, Phys. Chem. Chem. Phys. 2015, 17, 8297–8305.
- 8
- 8aJ. Kherb, S. C. Flores, P. S. Cremer, J. Phys. Chem. B 2012, 116, 7389–7397;
- 8bN. Schwierz, D. Horinek, R. R. Netz, Langmuir 2015, 31, 215–225;
- 8cM. Senske, D. Constantinescu-Aruxandei, M. Havenith, C. Herrmann, H. Weingärtner, S. Ebbinghaus, Phys. Chem. Chem. Phys. 2016, 18, 29698–29708;
- 8dE. E. Bruce, H. I. Okur, S. Stegmaier, C. I. Drexler, B. A. Rogers, N. F. A. van der Vegt, S. Roke, P. S. Cremer, J. Am. Chem. Soc. 2020, 142, 19094–19100.
- 9
- 9aL. M. Pegram, T. Wendorff, R. Erdmann, I. Shkel, D. Bellissimo, D. J. Felitsky, M. T. Record, Jr., Proc. Natl. Acad. Sci. USA 2010, 107, 7716–7721;
- 9bM. T. Record, Jr., E. Guinn, L. Pegram, M. Capp, Faraday Discuss. 2013, 160, 9–44; discussion 103–120;
- 9cL. M. Pegram, M. T. Record, Jr., J. Phys. Chem. B 2007, 111, 5411–5417;
- 9dL. M. Pegram, M. T. Record, J. Phys. Chem. B 2008, 112, 9428–9436.
- 10D. Mendes de Oliveira, S. R. Zukowski, V. Palivec, J. Hénin, H. Martinez-Seara, D. Ben-Amotz, P. Jungwirth, E. Duboué-Dijon, Phys. Chem. Chem. Phys. 2020, 22, 24014–24027.
- 11
- 11aK. B. Rembert, H. I. Okur, C. Hilty, P. S. Cremer, Langmuir 2015, 31, 3459–3464;
- 11bK. B. Rembert, J. Paterová, J. Heyda, C. Hilty, P. Jungwirth, P. S. Cremer, J. Am. Chem. Soc. 2012, 134, 10039–10046.
- 12
- 12aM. Ishibashi, T. Arakawa, M. Tokunaga, Protein Pept. Lett. 2003, 10, 575–580;
- 12bT. Arakawa, S. N. Timasheff, Biochemistry 1984, 23, 5912–5923;
- 12cL. I. N. Tomé, S. P. Pinho, M. Jorge, J. R. B. Gomes, J. A. P. Coutinho, J. Phys. Chem. B 2013, 117, 6116–6128;
- 12dH. Zhu, S. Damodaran, J. Agric. Food Chem. 1994, 42, 856–862.
- 13M. A. Metrick, N. do Carmo Ferreira, E. Saijo, A. G. Hughson, A. Kraus, C. Orrú, M. W. Miller, G. Zanusso, B. Ghetti, M. Vendruscolo, B. Caughey, Proc. Nat. Acad. Sci. 2019, 116, 23029–23039.
- 14
- 14aY. Marcus, Chem. Rev. 1988, 88, 1475–1498;
- 14bY. Marcus, Chem. Rev. 2009, 109, 1346–1370;
- 14cY. Marcus, Langmuir 2013, 29, 2881–2888;
- 14dY. Marcus, Ions in solution and their solvation, John Wiley & Sons, Inc., Hoboken, New Jersey, 2015.
10.1002/9781118892336 Google Scholar
- 15
- 15aS. Tang, J. J. Yang, in Encyclopedia of Metalloproteins (Eds.: R. H. Kretsinger, V. N. Uversky, E. A. Permyakov), Springer New York, New York, NY, 2013, pp. 1243–1250;
10.1007/978-1-4614-1533-6_257 Google Scholar
- 15bC. A. McPhalen, N. C. J. Strynadka, M. N. G. James, in Adv. Protein Chem. Vol. 42 (Eds.: C. B. Anfinsen, J. T. Edsall, F. M. Richards, D. S. Eisenberg), Academic Press, 1991, pp. 77–144;
- 15cP. Llinas, M. Masella, T. Stigbrand, A. Ménez, E. A. Stura, M. H. Le Du, Protein Sci. 2006, 15, 1691–1700.
- 16D. L. Beauchamp, M. Khajehpour, Biophys. Chem. 2012, 161, 29–38.
- 17C. Park, R. T. Raines, Biochemistry 2003, 42, 3509–3518.
- 18T. Y. Tsong, R. P. Hearn, D. P. Wrathall, J. M. Sturtevant, Biochemistry 1970, 9, 2666–2677.
- 19H. I. Okur, J. Kherb, P. S. Cremer, J. Am. Chem. Soc. 2013, 135, 5062–5067.
- 20
- 20aD. Mendes de Oliveira, D. Ben-Amotz, J. Phys. Chem. Lett. 2021, 12, 355–360;
- 20bO. A. Francisco, C. J. Clark, H. M. Glor, M. Khajehpour, RSC Adv. 2019, 9, 3416–3428.
- 21O. Sorokina, dissertation thesis, University of Manitoba (Winnipeg, Manitoba), 2014.
- 22
- 22aG. Graziano, J. Chem. Phys. 2008, 129, 084506/084501–084506/084509;
- 22bG. Graziano, J. Chem. Eng. Data 2009, 54, 464–467;
- 22cG. Graziano, Chem. Phys. Lett. 2009, 483, 67–71;
- 22dW. L. Masterton, T. P. Lee, J. Phys. Chem. 1970, 74, 1776–1782.
- 23D. Whitford, in Proteins: Structure and Function, Wiley, 2005.
- 24E. Gallego, J. Herranz, J. L. Nieto, M. Rico, J. Santoro, Int. J. Pept. Protein Res. 1983, 21, 242–253.
- 25H. A. Scheraga, W. J. Wedemeyer, E. Welker, in Methods Enzymol., Vol. 341 (Ed.: A. W. Nicholson), Academic Press, 2001, pp. 189–221.
- 26M. A. de los Rios, K. W. Plaxco, Biochemistry 2005, 44, 1243–1250.
- 27M. S. Sun, D. K. Harriss, V. R. Magnuson, Can. J. Chem. 1980, 58, 1253–1257.
- 28O. Annunziata, A. Payne, Y. Wang, J. Am. Chem. Soc. 2008, 130, 13347–13352.
- 29Y. Zhang, P. S. Cremer, Proc. Nat. Acad. Sci. 2009, 106, 15249–15253.
- 30C. F. Anderson, E. S. Courtenay, M. T. Record, J. Phys. Chem. B 2002, 106, 418–433.
- 31J. P. Gallivan, D. A. Dougherty, Proc. Nat. Acad. Sci. 1999, 96, 9459–9464.
- 32R. A. Kumpf, D. A. Dougherty, Science 1993, 261, 1708–1710.
- 33S. N. Timasheff, Biochemistry 1992, 31, 9857–9864.
- 34J. A. Schellman, Biophys. Chem. 2002, 96, 91–101.
- 35J. A. Schellman, Biopolymers 1994, 34, 1015–1026.
- 36Y. Wei, A. A. Thyparambil, Y. Wu, R. A. Latour, Langmuir 2014, 30, 14849–14858.
- 37C. Park, R. T. Raines, Protein Sci. 2000, 9, 2026–2033.
- 38G. Kalnitsky, J. P. Hummel, H. Resnick, J. R. Carter, L. B. Barnett, C. Dierks, Ann. N. Y. Acad. Sci. 1959, 81, 542–569.
- 39J. Aguiar, P. Carpena, J. A. Molina-Bolívar, C. Carnero Ruiz, J. Colloid Interface Sci. 2003, 258, 116–122.
- 40I. B. Berlman, in Handbook of fluorescence spectra of aromatic molecules, 2d ed., Academic Press, New York, 1971.