Photochemical Water Oxidation Catalyzed by a Water-Soluble Copper Phthalocyanine Complex
Ryota Terao
Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
Search for more papers by this authorTakashi Nakazono
Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Dr. Alexander Rene Parent
International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Department of Chemistry and Biochemistry, North Dakota State University, PO Box 6050, Fargo, ND, 58108-6050 USA
Search for more papers by this authorCorresponding Author
Prof. Ken Sakai
Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Center for Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorRyota Terao
Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
Search for more papers by this authorTakashi Nakazono
Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorCorresponding Author
Dr. Alexander Rene Parent
International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Department of Chemistry and Biochemistry, North Dakota State University, PO Box 6050, Fargo, ND, 58108-6050 USA
Search for more papers by this authorCorresponding Author
Prof. Ken Sakai
Department of Chemistry, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
International Institute for Carbon–Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Center for Molecular Systems (CMS), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395 Japan
Search for more papers by this authorGraphical Abstract
En route to solar fuels: Copper tetrasulfonatophthalocyanine serves as a water oxidation catalyst in the photoreaction using Ru(bpy)32+/Na2S2O8. (bpy=2,2′-bipyridine; see figure). Kinetic studies indicate a bimolecular radical coupling process to be the rate-determining step. Chloride contamination was found to dramatically decrease the water oxidation rate.
Abstract
Copper tetrasulfonatophthalocyanine (CuPcTS) is reported to serve as a catalyst for photochemical water oxidation via a radical coupling mechanism. Chloride greatly inhibits the water oxidation rate as a result of axial chloride binding to CuPcTS, preventing formation of the Cu oxyl or hydroxyl intermediate required for O−O bond formation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cplu201600263-sup-0001-misc_information.pdf1.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Schlögl, ChemSusChem 2010, 3, 209–222.
- 2G. F. Moore, G. W. Brudvig, Annu. Rev. Condens. Matter Phys. 2011, 2, 303–327.
- 3D. J. Wasylenko, R. D. Palmer, C. P. Berlinguette, Chem. Commun. 2013, 49, 218–227.
- 4M. D. Kärkäs, O. Verho, E. V. Johnston, B. Åkermark, Chem. Rev. 2014, 114, 11863–12001.
- 5M. Okamura, S. Masaoka, Chem. Asian J. 2015, 10, 306–315.
- 6A. R. Parent, K. Sakai, ChemSusChem 2014, 7, 2070–80.
- 7X.-J. Su, M. Gao, L. Jiao, R.-Z. Liao, P. E. M. Siegbahn, J.-P. Cheng, M.-T. Zhang, Angew. Chem. Int. Ed. 2015, 54, 4909–4914;
Angew. Chem. 2015, 127, 4991–4996.
10.1002/ange.201411625 Google Scholar
- 8L. Yu, X. Du, Y. Ding, H. Chen, P. Zhou, Chem. Commun. 2015, 51, 17443–17446.
- 9R.-J. Xiang, H.-Y. Wang, Z.-J. Xin, C.-B. Li, Y.-X. Lu, X.-W. Gao, H.-M. Sun, R. Cao, Chem. Eur. J. 2016, 22, 1602–1607.
- 10T. Nakazono, A. R. Parent, K. Sakai, Chem. Commun. 2013, 49, 6325–6327.
- 11T. Nakazono, A. R. Parent, K. Sakai, Chem. Eur. J. 2015, 21, 6723–6726.
- 12G. L. Elizarova, L. G. Matvienko, N. V. Lozhkina, V. E. Maizlish, V. N. Parmon, React. Kinet. Catal. Lett. 1981, 16, 285–288.
- 13S. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498–502.
- 14M.-T. Zhang, Z. Chen, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 2048–2051.
- 15D. M. Ryan, M. K. Coggins, J. J. Concepcion, D. L. Ashford, Z. Fang, L. Alibabaei, D. Ma, T. J. Meyer, M. L. Waters, Inorg. Chem. 2014, 53, 8120–8128.
- 16T. Zhang, C. Wang, S. Liu, J.-L. Wang, W. Lin, J. Am. Chem. Soc. 2014, 136, 273–281.
- 17D. L. Gerlach, S. Bhagan, A. A. Cruce, D. B. Burks, I. Nieto, H. T. Truong, S. P. Kelley, C. J. Herbst-Gervasoni, K. L. Jernigan, M. K. Bowman, S. Pan, M. Zeller, E. T. Papish, Inorg. Chem. 2014, 53, 12689–12698.
- 18M. K. Coggins, M.-T. Zhang, Z. Chen, N. Song, T. J. Meyer, Angew. Chem. Int. Ed. 2014, 53, 12226–12230;
Angew. Chem. 2014, 126, 12422–12426.
10.1002/ange.201407131 Google Scholar
- 19T.-T. Li, S. Cao, C. Yang, Y. Chen, X.-J. Lv, W.-F. Fu, Inorg. Chem. 2015, 54, 3061–3067.
- 20A. R. Parent, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev. 2013, 42, 2247–2252.
- 21S. Tanaka, M. Annaka, K. Sakai, Chem. Commun. 2012, 48, 1653–1655.
- 22L. Wang, L. Duan, L. Tong, L. Sun, J. Catal. 2013, 306, 129–132.
- 23J. H. Weber, D. H. Busch, Inorg. Chem. 1965, 4, 469–471.
- 24M. Hara, C. C. Waraksa, J. T. Lean, B. A. Lewis, T. E. Mallouk, J. Phys. Chem. A 2000, 104, 5275–5280.
- 25P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz, N. Sutin, J. Am. Chem. Soc. 1984, 106, 4772–4783.
- 26B. Das, A. Orthaber, S. Ott, A. Thapper, Chem. Commun. 2015, 51, 13074.
- 27H. Liu, M. Schilling, M. Yulikov, S. Luber, G. R. Patzke, ACS Catal. 2015, 5, 4994–4999.
- 28Z. Chen, J. J. Concepcion, N. Song, T. J. Meyer, Chem. Commun. 2014, 50, 8053–8056.
- 29A. Cortés, M. Cascante, M. L. Cárdenas, A. Cornish-Bowden, Biochem. J. 2001, 357, 263–268.
- 30T. Murata, Y. Yakiyama, K. Nakasuji, Y. Morita, Cryst. Growth Des. 2010, 10, 4898–4905.