Harnessing the Coordination Chemistry of 1,4,7-Triazacyclononane for Biomimicry and Radiopharmaceutical Applications
Corresponding Author
Dr. Tanmaya Joshi
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorDr. Manja Kubeil
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorAnne Nsubuga
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorGarima Singh
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorCorresponding Author
Dr. Gilles Gasser
Chimie ParisTech, PSL University, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
Search for more papers by this authorCorresponding Author
Dr. Holger Stephan
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorCorresponding Author
Dr. Tanmaya Joshi
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorDr. Manja Kubeil
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorAnne Nsubuga
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorGarima Singh
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorCorresponding Author
Dr. Gilles Gasser
Chimie ParisTech, PSL University, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
Search for more papers by this authorCorresponding Author
Dr. Holger Stephan
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
Search for more papers by this authorIn memory of Leone Spiccia
Graphical Abstract
Coordination secured: The flexible coordination chemistry of 1,4,7-triazacyclononane (TACN) derivatives has been widely exploited for generating macrocyclic metal complexes as good mimics of metal-containing biosites and as metal-based radiopharmaceuticals.
Abstract
1,4,7-Triazacyclononane (TACN)-based mono- and poly-nuclear metal complexes have found extensive use as biological mimics for understanding the structural and operational aspects of complex natural systems. Their coordination flexibility has also provided researchers access to a vast library of radiometal-binding motifs that display excellent thermodynamic stability and kinetic inertness upon metal complexation. Synthetic modification of the TACN backbone has yielded ligands that can form metal complexes with coordination geometries well suited for these applications. In particular, Leone Spiccia's research has played a significant role in accelerating the progress in these two fields. With a focus on his contributions to the topics of biomimicry and radiopharmaceuticals, this Minireview uses relevant examples to put in perspective the utility of macrocyclic coordination chemistry for biological inorganic chemistry applications.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aP. Chaudhuri, K. Wieghardt in Prog. Inorg. Chem. (Ed.: ), John Wiley & Sons, 2007, pp. 329–436, and references therein;
10.1002/9780470166369.ch4 Google Scholar
- 1b Macrocyclic Chemistry: Current Trends and Future Perspectives (Ed.: ), Springer Netherlands, Dordrecht, 2005, and references therein.
- 2H.-C. Liang, M. Dahan, K. D. Karlin, Curr. Opin. Chem. Biol. 1999, 3, 168–175.
- 3F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V. Lebrun, R. Reuter, V. Köhler, J. C. Lewis, T. R. Ward, Chem. Rev. 2018, 118, 142–231.
- 4R. Krämer, Coord. Chem. Rev. 1999, 182, 243–261.
- 5D. Parker in Crown Compounds Towards Future Applications (Ed.: ), Verlag-Chemie, Weinheim, 1992, pp. 51–69.
- 6Y.-W. Lin, Coord. Chem. Rev. 2017, 336, 1–27.
- 7F. Nastri, M. Chino, O. Maglio, A. Bhagi-Damodaran, Y. Lu, A. Lombardi, Chem. Soc. Rev. 2016, 45, 5020–5054.
- 8K. E. Dalle, F. Meyer, Eur. J. Inorg. Chem. 2015, 3391–3405, and references therein.
- 9D. Desbouis, I. P. Troitsky, M. J. Belousoff, L. Spiccia, B. Graham, Coord. Chem. Rev. 2012, 256, 897–937, and references therein.
- 10W. B. Tolman, J. Biol. Inorg. Chem. 2006, 11, 261–271.
- 11I. A. Koval, P. Gamez, C. Belle, K. Selmeczi, J. Reedijk, Chem. Soc. Rev. 2006, 35, 814–840.
- 12C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059–2107.
- 13L. F. Lindoy, K.-M. Park, S. S. Lee, Chem. Soc. Rev. 2013, 42, 1713–1727.
- 14B. L. Vallee, D. S. Auld, Acc. Chem. Res. 1993, 26, 543–551.
- 15E. L. Hegg, J. N. Burstyn, Coord. Chem. Rev. 1998, 173, 133–165, and references therein.
- 16J. P. Collman, Inorg. Chem. 1997, 36, 5145–5155.
- 17R. Codd, J. Gu, N. Ejje, T. Lifa in Inorganic Chemical Biology: Principles, Techniques and Applications (Ed.: ), John Wiley & Sons, Chichester, 2014, pp. 1–35, and references therein.
10.1002/9781118682975.ch1 Google Scholar
- 18T. Joshi, B. Graham, L. Spiccia, Acc. Chem. Res. 2015, 48, 2366–2379, and references therein.
- 19T. J. Atkins, J. Am. Chem. Soc. 1980, 102, 6364–6365.
- 20G. R. Weisman, V. Johnson, R. E. Fiala, Tetrahedron Lett. 1980, 21, 3635–3638.
- 21A. J. Blake, I. A. Fallis, S. Parsons, S. A. Ross, M. Schroder, J. Chem. Soc. Dalton Trans. 1996, 525–532.
- 22S. J. Brudenell, L. Spiccia, D. C. R. Hockless, E. R. T. Tiekink, J. Chem. Soc. Dalton Trans. 1999, 1475–1482.
10.1039/a809946d Google Scholar
- 23S. J. Brudenell, L. Spiccia, E. R. T. Tiekink, Inorg. Chem. 1996, 35, 1974–1979.
- 24E. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563–2606, and references therein.
- 25F. H. Fry, B. Moubaraki, K. S. Murray, L. Spiccia, M. Warren, B. W. Skelton, A. H. White, Dalton Trans. 2003, 866–871.
- 26M. J. Belousoff, B. Graham, B. Moubaraki, K. S. Murray, L. Spiccia, Eur. J. Inorg. Chem. 2006, 4872–4878.
- 27J. P. Collman, R. Schwenninger, M. Rapta, M. Broring, L. Fu, Chem. Commun. 1999, 137–138.
- 28P. Chaudhuri, I. Karpenstein, M. Winter, C. Butzlaff, E. Bill, A. X. Trautwein, U. Florke, H.-J. Haupt, J. Chem. Soc. Chem. Commun. 1992, 321–322.
- 29R. Cao, P. Müller, S. J. Lippard, J. Am. Chem. Soc. 2010, 132, 17366–17369.
- 30A. T. Fiedler, A. A. Fischer, J. Biol. Inorg. Chem. 2017, 22, 407–424.
- 31D. E. Wilcox, Chem. Rev. 1996, 96, 2435–2458.
- 32C. M. Dupureur, Curr. Opin. Chem. Biol. 2008, 12, 250–255.
- 33G. Parkin, Chem. Rev. 2004, 104, 699–768.
- 34E. Kimura, E. Kikuta, J. Biol. Inorg. Chem. 2000, 5, 139–155.
- 35B. L. Vallee, D. S. Auld, Biochemistry 1993, 32, 6493–6500.
- 36M. Warren, A. R. Battle, B. Moubaraki, K. S. Murray, L. Spiccia, B. W. Skelton, A. H. White, Dalton Trans. 2004, 2309–2313.
- 37B. Graham, L. Spiccia, B. W. Skelton, A. H. White, D. C. R. Hockless, Inorg. Chim. Acta 2005, 358, 3974–3982.
- 38B. Graham, L. Spiccia, A. M. Bond, M. T. W. Hearn, C. M. Kepert, J. Chem. Soc. Dalton Trans. 2001, 2232–2238.
- 39S. J. Brudenell, L. Spiccia, A. M. Bond, G. D. Fallon, D. C. R. Hockless, G. Lazarev, P. J. Mahon, E. R. T. Tiekink, Inorg. Chem. 2000, 39, 881–892.
- 40B. Graham, M. J. Grannas, M. T. W. Hearn, C. M. Kepert, L. Spiccia, B. W. Skelton, A. H. White, Inorg. Chem. 2000, 39, 1092–1099.
- 41B. Graham, B. Moubaraki, K. S. Murray, L. Spiccia, J. D. Cashion, D. C. R. Hockless, J. Chem. Soc. Dalton Trans. 1997, 887–894.
- 42N. Kindermann, A. Schober, S. Demeshko, N. Lehnert, F. Meyer, Inorg. Chem. 2016, 55, 11538–11550.
- 43Y. Sano, N. Lau, A. C. Weitz, J. W. Ziller, M. P. Hendrich, A. S. Borovik, Inorg. Chem. 2017, 56, 14118–14128.
- 44U. Bossek, H. Hummel, T. Weyhermüller, K. Wieghardt, S. Russell, L. van der Wolf, U. Kolb, Angew. Chem. Int. Ed. Engl. 1996, 35, 1552–1554;
Angew. Chem. 1996, 108, 1653–1656.
10.1002/ange.19961081334 Google Scholar
- 45V. B. Romakh, B. Therrien, G. Süss-Fink, G. B. Shul′pin, Inorg. Chem. 2007, 46, 3166–3175.
- 46E. W. Price, C. Orvig, Chem. Soc. Rev. 2014, 43, 260–290.
- 47C. F. Ramogida, C. Orvig, Chem. Commun. 2013, 49, 4720–4739.
- 48B. M. Zeglis, J. S. Lewis, Dalton Trans. 2011, 40, 6168–6195.
- 49M. D. Bartholomä, Inorg. Chim. Acta 2012, 389, 36–51.
- 50T. J. Wadas, E. H. Wong, G. R. Weisman, C. J. Anderson, Chem. Rev. 2010, 110, 2858–2902.
- 51C. S. Cutler, H. M. Hennkens, N. Sisay, S. Huclier-Markai, S. S. Jurisson, Chem. Rev. 2013, 113, 858–883.
- 52A. Casini, C. Orvig, J. D. G. Correia, Dalton Trans. 2017, 46, 14433–14434.
- 53R. Alberto, W. A. Herrmann, P. Kiprof, F. Baumgartner, Inorg. Chem. 1992, 31, 895–899.
- 54H. Braband, U. Abram, Inorg. Chem. 2006, 45, 6589–6591.
- 55S. Thieme, M. Walther, H. J. Pietzsch, J. Henniger, S. Preusche, P. Mading, J. Steinbach, Appl. Radiat. Isot. 2012, 70, 602–608.
- 56Y. Guo, J. J. Parry, R. Laforest, B. E. Rogers, C. J. Anderson, J. Nucl. Med. 2013, 54, 1621–1629.
- 57R. Yang, L. J. Zompa, Inorg. Chem. 1976, 15, 1499–1502.
- 58A. Guillou, L. M. P. Lima, M. Roger, D. Esteban-Gomez, R. Delgado, C. Platas-Iglesias, V. Patinec, R. Tripier, Eur. J. Inorg. Chem. 2017, 2435–2443.
- 59A. Bevilacqua, R. I. Gelb, W. B. Hebard, L. J. Zompa, Inorg. Chem. 1987, 26, 2699–2706.
- 60K. Bazakas, I. Lukes, J. Chem. Soc. Dalton Trans. 1995, 1133–1137.
- 61J. Notni, P. Hermann, J. Havlickova, J. Kotek, V. Kubicek, J. Plutnar, N. Loktionova, P. J. Riss, F. Rosch, I. Lukes, Chem. Eur. J. 2010, 16, 7174–7185.
- 62M. Le Fur, M. Beyler, N. Le Poul, L. M. P. Lima, Y. Le Mest, R. Delgado, C. Platas-Iglesias, V. Patinec, R. Tripier, Dalton Trans. 2016, 45, 7406–7420.
- 63M. Kodama, E. Kimura, J. Chem. Soc. Dalton Trans. 1977, 1473–1478.
- 64X. K. Sun, M. Wuest, G. R. Weisman, E. H. Wong, D. P. Reed, C. A. Boswell, R. Motekaitis, A. E. Martell, M. J. Welch, C. J. Anderson, J. Med. Chem. 2002, 45, 469–477.
- 65G. Gasser, L. Tjioe, B. Graham, M. J. Belousoff, S. Juran, M. Walther, J. U. Kunstler, R. Bergmann, H. Stephan, L. Spiccia, Bioconjugate Chem. 2008, 19, 719–730.
- 66M. Roger, L. M. P. Lima, M. Frindel, C. Platas-Iglesias, J. F. Gestin, R. Delgado, V. Patinec, R. Tripier, Inorg. Chem. 2013, 52, 5246–5259.
- 67J. Šimeček, H.-J. Wester, J. Notni, Dalton Trans. 2012, 41, 13803–13806.
- 68C. Gotzmann, F. Braun, M. D. Bartholoma, RSC Adv. 2016, 6, 119–131.
- 69M. Studer, C. F. Meares, Bioconjugate Chem. 1992, 3, 337–341.
- 70J. L. J. Dearling, S. D. Voss, P. Dunning, E. Snay, F. Fahey, S. V. Smith, J. S. Huston, C. F. Meares, S. T. Treves, A. B. Packard, Nucl. Med. Biol. 2011, 38, 29–38.
- 71K. Pombo-García, K. Zarschler, J. A. Barreto, J. Hesse, L. Spiccia, B. Graham, H. Stephan, RSC Adv. 2013, 3, 22443–22454.
- 72J. P. André, H. R. Maecke, M. Zehnder, L. Macko, K. G. Akyel, Chem. Commun. 1998, 1301–1302.
- 73K. P. Eisenwiener, M. I. M. Prata, I. Buschmann, H. W. Zhang, A. C. Santos, S. Wenger, J. C. Reubi, H. R. Macke, Bioconjugate Chem. 2002, 13, 530–541.
- 74H.-S. Chong, K. Garmestani, D. Ma, D. E. Milenic, T. Overstreet, M. W. Brechbiel, J. Med. Chem. 2002, 45, 3458–3464.
- 75J. P. L. Cox, A. S. Craig, I. M. Helps, K. J. Jankowski, D. Parker, M. A. W. Eaton, A. T. Millican, K. Millar, N. R. A. Beeley, B. A. Boyce, J. Chem. Soc. Perkin Trans. 1 1990, 2567–2576.
- 76C. Förster, M. Schubert, H.-J. Pietzsch, J. Steinbach, Molecules 2011, 16, 5228–5240.
- 77M. Eder, A. V. Krivoshein, M. Backer, J. M. Backer, U. Haberkorn, M. Eisenhut, Nucl. Med. Biol. 2010, 37, 405–412.
- 78V. Tolmachev, M. Altai, M. Sandstrom, A. Perols, A. E. Karlstrom, F. Boschetti, A. Orlova, Bioconjugate Chem. 2011, 22, 894–902.
- 79M. Altai, J. Strand, D. Rosik, R. K. Selvaraju, A. E. Karlstrom, A. Orlova, V. Tolmachev, Bioconjugate Chem. 2013, 24, 1102–1109.
- 80K. Pant, D. Groger, R. Bergmann, J. Pietzsch, J. Steinbach, B. Graham, L. Spiccia, F. Berthon, B. Czarny, L. Devel, V. Dive, H. Stephan, R. Haag, Bioconjugate Chem. 2015, 26, 906–918.
- 81M. W. Brechbiel, T. J. McMurry, O. A. Gansow, Tetrahedron Lett. 1993, 34, 3691–3694.
- 82M. Moreau, S. Poty, J. M. Vrigneaud, P. Walker, M. Guillemin, O. Raguin, A. Oudot, C. Bernhard, C. Goze, F. Boschetti, B. Collin, F. Brunotte, F. Denat, Dalton Trans. 2017, 46, 14659–14668.
- 83H.-S. Chong, H. A. Song, X. Ma, D. E. Milenic, E. D. Brady, S. Lim, H. Lee, K. Baidoo, D. Cheng, M. W. Brechbiel, Bioconjugate Chem. 2008, 19, 1439–1447.
- 84C. S. Kang, X. Sun, F. Jia, H. A. Song, Y. Chen, M. Lewis, H.-S. Chong, Bioconjugate Chem. 2012, 23, 1775–1782.
- 85J.-P. Meyer, P. Adumeau, J. S. Lewis, B. M. Zeglis, Bioconjugate Chem. 2016, 27, 2791–2807.
- 86N. J. Baumhover, M. E. Martin, S. G. Parameswarappa, K. C. Kloepping, M. S. O'Dorisio, F. C. Pigge, M. K. Schultz, Bioorg. Med. Chem. Lett. 2011, 21, 5757–5761.
- 87R. A. Davis, D. A. Rippner, S. H. Hausner, S. J. Parikh, A. J. McElrone, J. L. Sutcliffe, Environ. Sci. Technol. 2017, 51, 12537–12546.
- 88T. E. Jeppesen, L. K. Kristensen, C. H. Nielsen, L. C. Petersen, J. B. Kristensen, C. Behrens, J. Madsen, A. Kjaer, Bioconjugate Chem. 2018, 29, 117–125.
- 89K. Viehweger, L. Barbaro, K. P. Garcia, T. Joshi, G. Geipel, J. Steinbach, H. Stephan, L. Spiccia, B. Graham, Bioconjugate Chem. 2014, 25, 1011–1022.
- 90Z. Baranyai, D. Reich, A. Vagner, M. Weineisen, I. Toth, H. J. Wester, J. Notni, Dalton Trans. 2015, 44, 11137–11146.
- 91B. M. Zeglis, K. K. Sevak, T. Reiner, P. Mohindra, S. D. Carlin, P. Zanzonico, R. Weissleder, J. S. Lewis, J. Nucl. Med. 2013, 54, 1389–1396.
- 92K. Fujiki, S. Yano, T. Ito, Y. Kumagai, Y. Murakami, O. Kamigaito, H. Haba, K. Tanaka, Sci. Rep. 2017, 7, 1912.
- 93V. Maheshwari, J. L. J. Dearling, S. T. Treves, A. B. Packard, Inorg. Chim. Acta 2012, 393, 318–323.
- 94K. Zarschler, M. Kubeil, H. Stephan, RSC Adv. 2014, 4, 10157–10164.
- 95A. F. Prasanphanich, P. K. Nanda, T. L. Rold, L. Ma, M. R. Lewis, J. C. Garrison, T. J. Hoffman, G. L. Sieckman, S. D. Figueroa, C. J. Smith, Proc. Natl. Acad. Sci. USA 2007, 104, 12462–12467.
- 96F. Couture, C. Levesque, V. Dumulon-Perreault, S. Ait-Mohand, F. D'Anjou, R. Day, B. Guerin, Neoplasia 2014, 16, 634–643.
- 97S. R. Kumar, F. A. Gallazzi, R. Ferdani, C. J. Anderson, T. P. Quinn, S. L. Deutscher, Cancer Biother. Radiopharm. 2010, 25, 693–703.
- 98H. Guo, Y. Miao, Mol. Pharm. 2012, 9, 2322–2330.
- 99R. Bergmann, M. Kubeil, K. Zarschler, S. Chhabra, R. B. Tajhya, C. Beeton, M. W. Pennington, M. Bachmann, R. S. Norton, H. Stephan, Sci. Rep. 2017, 7, 3756.
- 100R. Prasad Bandari, Z. Jiang, T. Stott Reynolds, N. E. Bernskoetter, A. F. Szczodroski, K. J. Bassuner, D. L. Kirkpatrick, T. L. Rold, G. L. Sieckman, T. J. Hoffman, J. P. Connors, C. J. Smith, Nucl. Med. Biol. 2014, 41, 355–363.
- 101B. M. Zeglis, K. K. Sevak, T. Reiner, P. Mohindra, S. D. Carlin, P. Zanzonico, R. Weissleder, J. S. Lewis, J. Nucl. Med. 2013, 54, 1389–1396.
- 102R. Bergmann, A. Ruffani, B. Graham, L. Spiccia, J. Steinbach, J. Pietzsch, H. Stephan, Eur. J. Med. Chem. 2013, 70, 434–446.
- 103J. A. Barreto, M. Matterna, B. Graham, H. Stephan, L. Spiccia, New J. Chem. 2011, 35, 2705–2712.
- 104K. Pombo-García, C. L. Rühl, R. Lam, J. A. Barreto, C.-S. Ang, P. J. Scammells, P. Comba, L. Spiccia, B. Graham, T. Joshi, H. Stephan, ChemPlusChem 2017, 82, 638–646.