Photochromic Diarylethenes Designed for Surface Deposition: From Self-Assembled Monolayers to Single Molecules
Dr. Jan Patrick Dela Cruz Calupitan
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Université de Toulouse CNRS, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorDr. Olivier Galangau
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorDr. Takuya Nakashima
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
Search for more papers by this authorCorresponding Author
Prof. Tsuyoshi Kawai
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorCorresponding Author
Prof. Gwénaël Rapenne
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Université de Toulouse CNRS, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorDr. Jan Patrick Dela Cruz Calupitan
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Université de Toulouse CNRS, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorDr. Olivier Galangau
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorDr. Takuya Nakashima
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
Search for more papers by this authorCorresponding Author
Prof. Tsuyoshi Kawai
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorCorresponding Author
Prof. Gwénaël Rapenne
Division of Materials Science, Nara Institute of Science and Technology 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
International Collaborative Laboratory for Supraphotoactive Systems, NAIST-CEMES, 29 rue Marvig, 31055 Toulouse, France
Université de Toulouse CNRS, 29 rue Marvig, 31055 Toulouse, France
Search for more papers by this authorDedicated to Prof. François Diederich on the occasion of his retirement
Graphical Abstract
Switching on surfaces: STM studies of diarylethenes are reviewed, and the effect of molecular design on the isomerization and self-assembly processes of these photochromic molecules at the solid-liquid interface at ambient temperature and under low-temperature ultrahigh vacuum conditions are presented. The Review shows how switching may be different under both conditions, and has the goal of providing general molecular design principles that may aid future studies.
Abstract
The efficient switching that can occur between two stable isomers of diarylethenes makes them particularly promising targets for opto- and molecular electronics. To examine these classes of molecules for electronics applications, they have been subjected to a series of scanning tunneling microscopy (STM) experiments, which are the focus of this Review. A brief introduction to the chemical design of diarylethenes in terms of their switching capabilities along with the basics of STM are presented. Next, initial STM studies on these compounds under ambient conditions are discussed. An overview of how molecular design affects the isomerization and self-assembly of diarylethenes at the solid-liquid interface as investigated by STM is then presented, as well as single-molecule studies under ultrahigh vacuum. The last section presents further prospects for molecular design in the field.
Conflict of interest
The authors declare no conflict of interest.
References
- 1B. L. Feringa, W. R. Browne, Eds., Molecular Switches, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011.
- 2Y. Yokoyama, K. Nakatani, Eds., Photon-Working Switches, Springer Japan, Tokyo, 2017.
10.1007/978-4-431-56544-4 Google Scholar
- 3H. M. D. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809–1825.
- 4R. Klajn, Chem. Soc. Rev. 2014, 43, 148–184.
- 5Y. Yokoyama, Chem. Rev. 2000, 100, 1717–1740.
- 6M. Ratner, Nat. Nanotechnol. 2013, 8, 378–381.
- 7M. Kiguchi, Ed., Single-Molecule Electronics, Springer Singapore, Singapore, 2016.
10.1007/978-981-10-0724-8_3 Google Scholar
- 8M. Irie, Y. Yokoyama, T. Seki, Eds., New Frontiers in Photochromism, Springer Japan, Tokyo, 2013.
10.1007/978-4-431-54291-9 Google Scholar
- 9M. Irie, Chem. Rev. 2000, 100, 1685–1716.
- 10M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174–12277.
- 11K. Morgenstern, Prog. Surf. Sci. 2011, 86, 115–161.
- 12B. K. Pathem, S. A. Claridge, Y. B. Zheng, P. S. Weiss, Annu. Rev. Phys. Chem. 2013, 64, 605–630.
- 13J. L. Zhang, J. Q. Zhong, J. D. Lin, W. P. Hu, K. Wu, G. Q. Xu, A. T. S. Wee, W. Chen, Chem. Soc. Rev. 2015, 44, 2998–3022.
- 14D. Frath, S. Yokoyama, T. Hirose, K. Matsuda, J. Photochem. Photobiol. C Photochem. Rev. 2018, 34, 29–40.
- 15M. Irie, M. Mohri, J. Org. Chem. 1988, 53, 803–808.
- 16S. Chen, W. Li, W.-H. Zhu, in Photon-Working Switches (Eds.: ), Springer Japan, Tokyo, 2017, pp. 37–68.
10.1007/978-4-431-56544-4_2 Google Scholar
- 17T. Nakashima, T. Kawai, in New Frontiers in Photochromism (Eds.: ), Springer Japan, Tokyo, 2013, pp. 183–204.
10.1007/978-4-431-54291-9_10 Google Scholar
- 18S.-Z. Pu, Q. Sun, C.-B. Fan, R.-J. Wang, G. Liu, J. Mater. Chem. C 2016, 4, 3075–3093.
- 19J. Zhang, H. Tian, Adv. Opt. Mater. 2018, 6, 1701278.
- 20S. Nakamura, M. Irie, J. Org. Chem. 1988, 53, 6136–6138.
- 21K. Uchida, E. Tsuchida, Y. Aoi, S. Nakamura, M. Irie, Chem. Lett. 1999, 28, 63–64.
10.1246/cl.1999.63 Google Scholar
- 22Y. Shirota, H. Utsumi, T. Ujike, S. Yoshikawa, K. Moriwaki, D. Nagahama, H. Nakano, Opt. Mater. 2003, 21, 249–254.
- 23K. Matsuda, Y. Shinkai, T. Yamaguchi, K. Nomiyama, M. Isayama, M. Irie, Chem. Lett. 2003, 32, 1178–1179.
- 24S. Fukumoto, T. Nakashima, T. Kawai, Angew. Chem. Int. Ed. 2011, 50, 1565–1568; Angew. Chem. 2011, 123, 1603–1606.
- 25D. Kitagawa, S. Kobatake, Chem. Rec. 2016, 16, 2005–2015.
- 26H. Sotome, T. Nagasaka, K. Une, S. Morikawa, T. Katayama, S. Kobatake, M. Irie, H. Miyasaka, J. Am. Chem. Soc. 2017, 139, 17159–17167.
- 27S. Fredrich, R. Göstl, M. Herder, L. Grubert, S. Hecht, Angew. Chem. Int. Ed. 2016, 55, 1208–1212;
Angew. Chem. 2016, 128, 1226–1230.
10.1002/ange.201509875 Google Scholar
- 28T. Nakashima, Y. Kajiki, S. Fukumoto, M. Taguchi, S. Nagao, S. Hirota, T. Kawai, J. Am. Chem. Soc. 2012, 134, 19877–19883.
- 29J. P. Calupitan, T. Nakashima, Y. Hashimoto, T. Kawai, Chem. Eur. J. 2016, 22, 10002–10008.
- 30B. Gorodetsky, N. R. Branda, Adv. Funct. Mater. 2007, 17, 786–796.
- 31A. Mulas, X. He, Y.-M. Hervault, L. Norel, S. Rigaut, C. Lagrost, Chem. Eur. J. 2017, 23, 10205–10214.
- 32S. Lee, Y. You, K. Ohkubo, S. Fukuzumi, W. Nam, Chem. Sci. 2014, 5, 1463.
- 33S. Lee, Y. You, K. Ohkubo, S. Fukuzumi, W. Nam, Angew. Chem. Int. Ed. 2012, 51, 13154–13158.
- 34T. Koshido, T. Kawai, K. Yoshino, J. Phys. Chem. C, 1995, 99, 6110–6114.
- 35G. Guirado, C. Coudret, J.-P. Launay, J. Phys. Chem. C, 2007, 111, 2770–2776.
- 36A. Peters, N. R. Branda, J. Am. Chem. Soc. 2003, 125, 3404–3405.
- 37M. Irie, K. Uchida, Bull. Chem. Soc. Jpn. 1998, 71, 985–996.
- 38M. Herder, B. M. Schmidt, L. Grubert, M. Pätzel, J. Schwarz, S. Hecht, J. Am. Chem. Soc. 2015, 137, 2738–2747.
- 39S. Kawai, T. Nakashima, Y. Kutsunugi, H. Nakagawa, H. Nakano, T. Kawai, J. Mater. Chem. C, 2009, 19, 3606.
- 40D. Kitagawa, H. Tsujioka, F. Tong, X. Dong, C. J. Bardeen, S. Kobatake, J. Am. Chem. Soc. 2018, 140, 4208–4212.
- 41S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 2007, 446, 778–781.
- 42G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Appl. Phys. Lett. 1982, 40, 178–180.
- 43G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1982, 49, 57–61.
- 44G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1983, 50, 120–123.
- 45J. Tersoff, D. R. Hamann, Phys. Rev. Lett. 1983, 50, 1998–2001.
- 46N. D. Lang, Phys. Rev. Lett. 1985, 55, 230–233.
- 47R. J. Hamers, R. M. Tromp, J. E. Demuth, Phys. Rev. Lett. 1986, 56, 1972–1975.
- 48G. Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59, 615–625.
- 49H. Ohtani, R. J. Wilson, S. Chiang, C. M. Mate, Phys. Rev. Lett. 1988, 60, 2398–2401.
- 50P. Sautet, C. Joachim, Phys. Rev. B, 1988, 38, 12238–12247.
- 51J. S. Foster, J. E. Frommer, P. C. Arnett, Nature 1988, 331, 324–326.
- 52J. S. Foster, J. E. Frommer, Nature 1988, 333, 542–545.
- 53D. P. E. Smith, H. Horber, C. Gerber, G. Binnig, Science 1989, 245, 43–45.
- 54D. P. E. Smith, J. K. H. Hörber, G. Binnig, H. Nejoh, Nature 1990, 344, 641–644.
- 55G. C. McGonigal, R. H. Bernhardt, D. J. Thomson, Appl. Phys. Lett. 1990, 57, 28–30.
- 56J. P. Rabe, S. Buchholz, Phys. Rev. Lett. 1991, 66, 2096–2099.
- 57D. M. Eigler, E. K. Schweizer, Nature 1990, 344, 524–526.
- 58K. Morgenstern, N. Lorente, K.-H. Rieder, Phys. Status Solidi B 2013, 250, 1671–1751.
- 59G. Rapenne, C. Joachim, Nat. Rev. Mater. 2017, 2, 17040.
- 60S. J. van der Molen, H. van der Vegte, T. Kudernac, I. Amin, B. L. Feringa, B. J. van Wees, Nanotechnology 2006, 17, 310–314.
- 61N. Katsonis, T. Kudernac, M. Walko, S. J. van der Molen, B. J. van Wees, B. L. Feringa, Adv. Mater. 2006, 18, 1397–1400.
- 62K. Uchida, Y. Yamanoi, T. Yonezawa, H. Nishihara, J. Am. Chem. Soc. 2011, 133, 9239–9241.
- 63Arramel, T. C. Pijper, T. Kudernac, N. Katsonis, M. van der Maas, B. L. Feringa, B. J. van Wees, Nanoscale 2013, 5, 9277.
- 64N. Battaglini, H. Klein, C. Hortholary, C. Coudret, F. Maurel, P. Dumas, Ultramicroscopy 2007, 107, 958–962.
- 65S. V. Snegir, A. A. Marchenko, P. Yu, F. Maurel, O. L. Kapitanchuk, S. Mazerat, M. Lepeltier, A. Léaustic, E. Lacaze, J. Phys. Chem. Lett. 2011, 2, 2433–2436.
- 66S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, E. Lacaze, Langmuir 2014, 30, 13556–13563.
- 67R. Arai, S. Uemura, M. Irie, K. Matsuda, J. Am. Chem. Soc. 2008, 130, 9371–9379.
- 68S. Yokoyama, T. Hirose, K. Matsuda, Chem. Commun. 2014, 50, 5964–5966.
- 69S. Yokoyama, T. Hirose, K. Matsuda, Chem. Eur. J. 2015, 21, 13569–13576.
- 70N. Maeda, T. Hirose, S. Yokoyama, K. Matsuda, J. Phys. Chem. C, 2016, 120, 9317–9325.
- 71T. Sakano, Y. Imaizumi, T. Hirose, K. Matsuda, Chem. Lett. 2013, 42, 1537–1539.
- 72D. Frath, T. Sakano, Y. Imaizumi, S. Yokoyama, T. Hirose, K. Matsuda, Chem. Eur. J. 2015, 21, 11350–11358.
- 73S. Bonacchi, M. El Garah, A. Ciesielski, M. Herder, S. Conti, M. Cecchini, S. Hecht, P. Samorì, Angew. Chem. Int. Ed. 2015, 54, 4865–4869.
- 74S. Takami, T. Kawai, M. Irie, Eur. J. Org. Chem. 2002, 2002, 3796–3800.
10.1002/1099-0690(200211)2002:22<3796::AID-EJOC3796>3.0.CO;2-X Google Scholar
- 75S. Yokoyama, T. Hirose, K. Matsuda, Langmuir 2015, 31, 6404–6414.
- 76K.-H. Ernst, in Supramolecular Chirality (Eds.: ), Springer-Verlag, Berlin/Heidelberg, 2006, pp. 209–252.
- 77S. De Feyter, P. Iavicoli, H. Xu, in Chirality at the Nanoscale (Ed.: ), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009, pp. 215–245.
10.1002/9783527625345.ch7 Google Scholar
- 78N. Maeda, T. Hirose, K. Matsuda, Angew. Chem. Int. Ed. 2017, 56, 2371–2375.
- 79A. Bellec, M. Cranney, Y. Chalopin, Mayne, G. Comtet, G. Dujardin, J. Phys. Chem. C, 2007, 111, 14818–14822.
- 80C. Coudret, G. Guirado, N. Estrampes, R. Coratger, Phys. Chem. Chem. Phys. 2011, 13, 20946.
- 81T. K. Shimizu, J. Jung, H. Imada, Y. Kim, Chem. Commun. 2013, 49, 8710.
- 82T. K. Shimizu, J. Jung, H. Imada, Y. Kim, Angew. Chem. Int. Ed. 2014, 53, 13729–13733.
- 83J. Wirth, N. Hatter, R. Drost, T. R. Umbach, S. Barja, M. Zastrow, K. Rück-Braun, J. I. Pascual, P. Saalfrank, K. J. Franke, J. Phys. Chem. C, 2015, 119, 4874–4883.
- 84B. Gorodetsky, H. D. Samachetty, R. L. Donkers, M. S. Workentin, N. R. Branda, Angew. Chem. Int. Ed. 2004, 43, 2812–2815.
- 85R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. 1969, 8, 781–853.
- 86G. Reecht, C. Lotze, D. Sysoiev, T. Huhn, K. J. Franke, ACS Nano 2016, 10, 10555–10562.
- 87G. Reecht, C. Lotze, D. Sysoiev, T. Huhn, K. J. Franke, J. Phys. Condens. Matter, 2017, 29, 294001.
- 88J. P. D. C. Calupitan, O. Galangau, O. Guillermet, R. Coratger, T. Nakashima, G. Rapenne, T. Kawai, J. Phys. Chem. C, 2017, 121, 25384–25389.
- 89J. P. D. C. Calupitan, O. Galangau, O. Guillermet, R. Coratger, T. Nakashima, G. Rapenne, T. Kawai, Eur. J. Org. Chem. 2017, 2017, 2451–2461.
- 90J. K. Gimzewski, Science 1998, 281, 531–533.
- 91F. Chiaravalloti, L. Gross, K.-H. Rieder, S. M. Stojkovic, A. Gourdon, C. Joachim, F. Moresco, Nat. Mater. 2007, 6, 30–33.
- 92H.-P. Jacquot de Rouville, R. Garbage, R. E. Cook, A. R. Pujol, A. M. Sirven, G. Rapenne, Chem. Eur. J. 2012, 18, 3023–3031.
- 93J. P. D. C. Calupitan, O. Guillermet, O. Galangau, M. Yengui, J. Echeverría, X. Bouju, T. Nakashima, G. Rapenne, R. Coratger, T. Kawai, J. Phys. Chem. C. 2018, 122, 5978–5991.
- 94G. Schulze, K. J. Franke, J. I. Pascual, Phys. Rev. Lett. 2012, 109, 026120.
- 95S. Jaekel, A. Richter, R. Lindner, R. Bechstein, C. Nacci, S. Hecht, A. Kühnle, L. Grill, ACS Nano 2018, 12, 1821–1828.
- 96G. Vives, G. Rapenne, Tetrahedron, 2008, 64, 11462–11468.
- 97U. G. E. Perera, F. Ample, H. Kersell, Y. Zhang, G. Vives, J. Echeverria, M. Grisolia, G. Rapenne, C. Joachim, S.-W. Hla, Nat. Nanotechnol. 2013, 8, 46–51.
- 98R. Stefak, N. Ratel-Ramond, G. Rapenne, Inorg. Chim. Acta 2012, 380, 181–186.
- 99Y. Zhang, H. Kersell, R. Stefak, J. Echeverria, V. Iancu, U. G. E. Perera, Y. Li, A. Deshpande, K.-F. Braun, C. Joachim, G. Rapenne, S.-W. Hla, Nat. Nanotechnol. 2016, 11, 706–712.
- 100T. C. Pijper, O. Ivashenko, M. Walko, P. Rudolf, W. R. Browne, B. L. Feringa, J. Phys. Chem. C, 2015, 119, 3648–3657.
- 101T. Kawai, T. Iseda, M. Irie, Chem. Commun. 2004, 72.
- 102J. Yang, D. Sordes, M. Kolmer, D. Martrou, C. Joachim, Eur. Phys. J. Appl. Phys. 2016, 73, 10702.
- 103T. Nakashima, K. Tsuchie, R. Kanazawa, R. Li, S. Iijima, O. Galangau, H. Nakagawa, K. Mutoh, Y. Kobayashi, J. Abe, T. Kawai, J. Am. Chem. Soc. 2015, 137, 7023–7026.
- 104H. Nakagawa, T. Nakashima, T. Kawai, Eur. J. Org. Chem. 2012, 2012, 4493–4500.
- 105O. Galangau, S. Delbaere, N. Ratel-Ramond, G. Rapenne, R. Li, J. P. D. C. Calupitan, T. Nakashima, T. Kawai, J. Org. Chem. 2016, 81, 11282–11290.
- 106C. J. Martin, M. Minamide, J. P. D. C. Calupitan, J. Kuno, T. Nakashima, G. Rapenne, T. Kawai, J. Org. Chem. 2018, 83, 13700–13706.
- 107A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616–6643.
- 108E. Carbonell-Sanromà, J. Hieulle, M. Vilas-Varela, P. Brandimarte, M. Iraola, A. Barragán, J. Li, M. Abadia, M. Corso, D. Sánchez-Portal, D. Peña, J. I. Pascual, ACS Nano 2017, 11, 7355–7361.
- 109E. Carbonell-Sanromà, P. Brandimarte, R. Balog, M. Corso, S. Kawai, A. Garcia-Lekue, S. Saito, S. Yamaguchi, E. Meyer, D. Sánchez-Portal, J. I. Pascual, Nano Lett. 2017, 17, 50–56.
- 110R. Fasel, M. Parschau, K.-H. Ernst, Nature 2006, 439, 449–452.
- 111T. Nakashima, K. Imamura, K. Yamamoto, Y. Kimura, S. Katao, Y. Hashimoto, T. Kawai, Chem. Eur. J. 2014, 20, 13722–13729.
- 112Y. Hashimoto, T. Nakashima, D. Shimizu, T. Kawai, Chem. Commun. 2016, 52, 5171–5174.
- 113T. Nakashima, K. Yamamoto, Y. Kimura, T. Kawai, Chem. Eur. J. 2013, 19, 16972–16980.