Targeted Synthesis of NIR Luminescent Rhenium Diimine cis,trans-[Re( )(CO)2(L)2]n+ Complexes Containing N-Donor Axial Ligands: Photophysical, Electrochemical, and Theoretical Studies
Dr. J. R. Shakirova
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorS. Nayeri
Department of Chemistry, Sharif University of Technology, P.O. Box, 11155-3516 Tehran, Iran
Search for more papers by this authorS. Jamali
Department of Chemistry, Sharif University of Technology, P.O. Box, 11155-3516 Tehran, Iran
Search for more papers by this authorDr. Vitaly V. Porsev
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorDr. Vladislav V. Gurzhiy
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorOleg V. Levin
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorProf. I. O. Koshevoy
Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
Search for more papers by this authorCorresponding Author
Prof. S. P. Tunik
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorDr. J. R. Shakirova
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorS. Nayeri
Department of Chemistry, Sharif University of Technology, P.O. Box, 11155-3516 Tehran, Iran
Search for more papers by this authorS. Jamali
Department of Chemistry, Sharif University of Technology, P.O. Box, 11155-3516 Tehran, Iran
Search for more papers by this authorDr. Vitaly V. Porsev
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorDr. Vladislav V. Gurzhiy
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorOleg V. Levin
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorProf. I. O. Koshevoy
Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
Search for more papers by this authorCorresponding Author
Prof. S. P. Tunik
Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
Search for more papers by this authorGraphical Abstract
NIR out of the microwave: A series of NIR-emitting rhenium diimine complexes, [Re(NN)(CO)2(L)2]+(L=NCMe, aromatic N-donor ligands) have been synthesized by activating standard precursors with UV irradiation and microwave heating. The obtained chromophores display strong absorption in the visible area of the electronic spectrum and NIR emission with emission wavelengths ranging from 711 to 800 nm. DFT calculations showed dominant contribution of the 3MLCT (dπ(Re)→π*( )) character to the emissive excited state.
Abstract
The combined action of ultraviolet irradiation and microwave heating onto acetonitrile solution of [Re( )(CO)3(NCMe)]OTf ( =phenantroline and neocuproine) afforded cis,trans-Re( )(CO)2(NCMe)2]+ acetonitrile derivatives. Substitution of relatively labile NCMe with a series of aromatic N-donor ligands (pyridine, pyrazine, 4,4’-bipyridine, N-methyl-4,4’-bipyridine) gave a novel family of the diimine cis,trans-[Re( )(CO)2(L)2]+ complexes. Photophysical studies of the obtained compounds in solution revealed unusually high absorption across the visible region and NIR phosphorescence with emission band maxima ranging from 711 to 805 nm. The nature of emissive excited states was studied using DFT calculations to show dominant contribution of 3MLCT (dπ(Re)→π*( )) character. Electrochemical (CV and DPV) studies of the monocationic diimine complexes revealed one reduction and one oxidation wave assigned to reduction of the diimine moiety and oxidation of the rhenium center, respectively.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cplu202000597-sup-0001-misc_information.pdf3.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. U. Connell, P. S. Donnelly, Coord. Chem. Rev. 2018, 375, 267–284.
- 2K. K.-W. Lo, Acc. Chem. Res. 2015, 48, 2985–2995.
- 3P. V. Simpson, M. Falasca, M. Massi, Chem. Commun. 2018, 54, 12429–12438.
- 4A. A. Abdel-Shafi, J. L. Bourdelande, S. S. Ali, Dalton Trans. 2007, 2510.
- 5J. Skiba, T. Bernaś, D. Trzybiński, K. Woźniak, G. Ferraro, D. Marasco, A. Merlino, M. Shafikov, R. Czerwieniec, K. Kowalski, Molecules 2017, 22, 809.
- 6A. Vlček, Top. Organomet. Chem., 2009, 115–158.
- 7T. Morimoto, J. Tanabe, K. Sakamoto, K. Koike, O. Ishitani, Res. Chem. Intermed. 2013, 39, 437–447.
- 8Y. Kuramochi, O. Ishitani, H. Ishida, Coord. Chem. Rev. 2018, 373, 333–356.
- 9V. W.-W. Yam, V. C.-Y. Lau, K.-K. Cheung, J. Chem. Soc. Chem. Commun. 1995, 259.
- 10V. W.-W. Yam, V. C.-Y. Lau, L.-X. Wu, J. Chem. Soc. Dalton Trans. 1998, 1461–1468.
- 11G.-W. Zhao, J.-H. Zhao, Y.-X. Hu, D.-Y. Zhang, X. Li, Synth. Met. 2016, 212, 131–141.
- 12M. Mauro, E. Q. Procopio, Y. Sun, C.-H. Chien, D. Donghi, M. Panigati, P. Mercandelli, P. Mussini, G. D'Alfonso, L. De Cola, Adv. Funct. Mater. 2009, 19, 2607–2614.
- 13T. Yu, D. P.-K. Tsang, V. K.-M. Au, W. H. Lam, M.-Y. Chan, V. W.-W. Yam, Chem. Eur. J. 2013, 19, 13418–13427.
- 14J. K. Hino, L. Della Ciana, W. J. Dressick, B. P. Sullivan, Inorg. Chem. 1992, 31, 1072–1080.
- 15R. Lin, Y. Fu, C. P. Brock, T. F. Guarr, Inorg. Chem. 1992, 31, 4346–4353.
- 16L. D. Ramos, H. M. da Cruz, K. P. Morelli Frin, Photochem. Photobiol. Sci. 2017, 16, 459–466.
- 17K. S. Kisel, A. S. Melnikov, E. V. Grachova, A. J. Karttunen, A. Doménech-Carbó, K. Y. Monakhov, V. G. Semenov, S. P. Tunik, I. O. Koshevoy, Inorg. Chem. 2019, 58, 1988–2000.
- 18S. C. Marker, S. N. MacMillan, W. R. Zipfel, Z. Li, P. C. Ford, J. J. Wilson, Inorg. Chem. 2018, 57, 1311–1331.
- 19J. Rohacova, O. Ishitani, Chem. Sci. 2016, 7, 6728–6739.
- 20I. Kondrasenko, K. S. Kisel, A. J. Karttunen, J. Jänis, E. V. Grachova, S. P. Tunik, I. O. Koshevoy, Eur. J. Inorg. Chem. 2015, 2015, 864–875.
- 21S. Nayeri, S. Jamali, V. V. Pavlovskiy, V. V. Porsev, R. A. Evarestov, K. S. Kisel, I. O. Koshevoy, J. R. Shakirova, S. P. Tunik, Eur. J. Inorg. Chem. 2019, 2019, 4350–4357.
- 22V. W.-W. Yam, K. M.-C. Wong, S. H.-F. Chong, V. C.-Y. Lau, S. C.-F. Lam, L. Zhang, K.-K. Cheung, J. Organomet. Chem. 2003, 670, 205–220.
- 23S.-T. Lam, N. Zhu, V. K.-M. Au, V. W.-W. Yam, Polyhedron 2015, 86, 10–16.
- 24W.-K. Chung, M. Ng, N. Zhu, S. K.-L. Siu, V. W.-W. Yam, J. Organomet. Chem. 2017, 847, 278–288.
- 25S. M. Woessner, J. B. Helms, J. F. Houlis, B. P. Sullivan, Inorg. Chem. 1999, 38, 4380–4381.
- 26S. M. Woessner, J. B. Helms, K. M. Lantzky, B. P. Sullivan, Inorg. Chem. 1999, 38, 4378–4379.
- 27J. L. Smithback, J. B. Helms, E. Schutte, S. M. Woessner, B. P. Sullivan, Inorg. Chem. 2006, 45, 2163–2174.
- 28B. Neumann, C. Krinninger, I.-P. Lorenz, Eur. J. Inorg. Chem. 2007, 2007, 472–480.
- 29K. Koike, J. Tanabe, S. Toyama, H. Tsubaki, K. Sakamoto, J. R. Westwell, F. P. A. Johnson, H. Hori, H. Saitoh, O. Ishitani, Inorg. Chem. 2000, 39, 2777–2783.
- 30O. Ishitani, K. Kanai, Y. Yamada, K. Sakamoto, Chem. Commun. 2001, 1, 1514–1515.
- 31A. S. DelNegro, S. M. Woessner, B. P. Sullivan, D. M. Dattelbaum, J. R. Schoonover, Inorg. Chem. 2001, 40, 5056–5057.
- 32H. Tsubaki, A. Sekine, Y. Ohashi, K. Koike, H. Takeda, O. Ishitani, J. Am. Chem. Soc. 2005, 127, 15544–15555.
- 33Y. Yamamoto, Y. Tamaki, T. Yui, K. Koike, O. Ishitani, J. Am. Chem. Soc. 2010, 132, 11743–11752.
- 34Y. Yamamoto, S. Sawa, Y. Funada, T. Morimoto, M. Falkenström, H. Miyasaka, S. Shishido, T. Ozeki, K. Koike, O. Ishitani, J. Am. Chem. Soc. 2008, 130, 14659–14674.
- 35A. E. Pierri, A. Pallaoro, G. Wu, P. C. Ford, J. Am. Chem. Soc. 2012, 134, 18197–18200.
- 36T. Morimoto, M. Ito, K. Koike, T. Kojima, T. Ozeki, O. Ishitani, Chem. Eur. J. 2012, 18, 3292–3304.
- 37J. Rohacova, O. Ishitani, Dalton Trans. 2017, 46, 8899–8919.
- 38L. Tso-Lun Lo, S.-W. Lai, S.-M. Yiu, C.-C. Ko, Chem. Commun. 2013, 49, 2311.
- 39D. A. Kurtz, B. Dhakal, E. S. Donovan, G. S. Nichol, G. A. N. Felton, Inorg. Chem. Commun. 2015, 59, 80–83.
- 40C.-C. Ko, A. W.-Y. Cheung, S.-M. Yiu, Polyhedron 2015, 86, 17–23.
- 41D. A. Kurtz, K. R. Brereton, K. P. Ruoff, H. M. Tang, G. A. N. Felton, A. J. M. Miller, J. L. Dempsey, Inorg. Chem. 2018, 57, 5389–5399.
- 42Y. Yamazaki, J. Rohacova, H. Ohtsu, M. Kawano, O. Ishitani, Inorg. Chem. 2018, 57, 15158–15171.
- 43S. Sato, A. Sekine, Y. Ohashi, O. Ishitani, A. M. Blanco-Rodríguez, A. Vlček, T. Unno, K. Koike, Inorg. Chem. 2007, 46, 3531–3540.
- 44K. D. Ley, K. S. Schanze, Coord. Chem. Rev. 1998, 171, 287–307.
- 45A. Zarkadoulas, E. Koutsouri, C. Kefalidi, C. A. Mitsopoulou, Coord. Chem. Rev. 2015, 304–305, 55–72.
- 46L. A. Worl, R. Duesing, P. Chen, L. Della Ciana, T. J. Meyer, J. Chem. Soc. Dalton Trans. 1991, 849–858.
- 47C. C. Ko, C. O. Ng, S. M. Yiu, Organometallics 2012, 31, 7074–7084.
- 48A. Luengo, M. Redrado, I. Marzo, V. Fernández-Moreira, M. C. Gimeno, Inorg. Chem. 2020, DOI 10.1021/acs.inorgchem.0c00813.
- 49M. Giese, M. Albrecht, K. Rissanen, Chem. Commun. 2016, 52, 1778–1795.
- 50O. B. Berryman, V. S. Bryantsev, D. P. Stay, D. W. Johnson, B. P. Hay, J. Am. Chem. Soc. 2007, 129, 48–58.
- 51T. L. D. Tam, C. K. Ng, X. Lu, Z. L. Lim, J. Wu, Chem. Commun. 2018, 54, 7374–7377.
- 52A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017, 543, 637–646.
- 53J. Novotný, S. Bazzi, R. Marek, J. Kozelka, Phys. Chem. Chem. Phys. 2016, 18, 19472–19481.
- 54A. Leite, L. Cunha-Silva, D. Silva, A. I. M. C. Lobo Ferreira, L. M. N. B. F. Santos, I. C. S. Cardoso, V. L. M. Silva, M. Rangel, A. M. G. Silva, Chem. Eur. J. 2019, 25, 15073–15082.
- 55R. A. Lalancette, W. Furey, J. N. Costanzo, P. R. Hemmes, F. Jordan, Acta Crystallogr. Sect. B 1978, 34, 2950–2953.
- 56H. Atallah, C. M. Taliaferro, K. A. Wells, F. N. Castellano, Dalton Trans. 2020, 49, 11565–11576.
- 57J. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952–957.
- 58J. V. Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 630–632.
- 59S.-T. Lam, N. Zhu, V. W.-W. Yam, Inorg. Chem. 2009, 48, 9664–9670.
- 60W.-K. Chung, K. M.-C. Wong, W. H. Lam, X. Zhu, N. Zhu, H.-S. Kwok, V. W.-W. Yam, New J. Chem. 2013, 37, 1753–1767.
- 61T. Klemens, A. Świtlicka, A. Szlapa-Kula, Ł. Łapok, M. Obłoza, M. Siwy, M. Szalkowski, S. Maćkowski, M. Libera, E. Schab-Balcerzak, et al., Organometallics 2019, 38, 4206–4223.
- 62C.-C. Ko, L.-X. Wu, K. M.-C. Wong, N. Zhu, V. W.-W. Yam, Chem. Eur. J. 2004, 10, 766–776.
- 63S. Záliš, C. J. Milne, A. El Nahhas, A. M. Blanco-Rodríguez, R. M. van der Veen, A. Vlček, Inorg. Chem. 2013, 52, 5775–5785.
- 64P. Bujak, I. Kulszewicz-Bajer, M. Zagorska, V. Maurel, I. Wielgus, A. Pron, Chem. Soc. Rev. 2013, 42, 8895–8999.
- 65S. Berger, A. Klein, W. Kaim, J. Fiedler, Inorg. Chem. 1998, 37, 5664–5671.
- 66D. J. Liard, A. Vlček, Inorg. Chem. 2000, 39, 485–490.
- 67M. Busby, D. J. Liard, M. Motevalli, H. Toms, A. Vlček, Inorg. Chim. Acta 2004, 357, 167–176.
- 68A. Vlček, I. R. Farrell, D. J. Liard, P. Matousek, M. Towrie, A. W. Parker, D. C. Grills, M. W. George, Dalton Trans. 2002, 701–712.
- 69D. J. Liard, C. J. Kleverlaan, A. Vlček, Inorg. Chem. 2003, 42, 7995–8002.
- 70D. J. Liard, M. Busby, I. R. Farrell, P. Matousek, M. Towrie, A. Vlček, J. Phys. Chem. A 2004, 108, 556–567.
- 71S. L. Mecklenburg, K. A. Opperman, P. Chen, T. J. Meyer, J. Phys. Chem. 1996, 100, 15145–15151.
- 72P. Chen, R. A. Palmer, T. J. Meyer, J. Phys. Chem. A 1998, 102, 3042–3047.
- 73L. Striepe, T. Baumgartner, Chem. Eur. J. 2017, 23, 16924–16940.
- 74K. W. Shah, S.-X. Wang, D. X. Y. Soo, J. Xu, Polymers (Basel). 2019, 11, 1839.
- 75R. J. Shaver, M. W. Perkovic, D. P. Rillema, C. Woods, Inorg. Chem. 1995, 34, 5446–5454.
- 76A. Vlček Jr., I. R. Farrell, D. J. Liard, P. Matousek, M. Towrie, A. W. Parker, D. C. Grills, M. W. George, J. Chem. Soc. Dalton Trans. 2002, 701–712.
- 77L. A. Berben, M. C. Faia, N. R. M. Crawford, J. R. Long, Inorg. Chem. 2006, 45, 6378–6386.
- 78J. M. Smieja, C. P. Kubiak, Inorg. Chem. 2010, 49, 9283–9289.
- 79CrysAlisPro, Rigaku Oxford Diffraction,Version 1.171.39.35a 2017.
- 80G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
- 81G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- 82O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- 83A. L. Spek, Acta Crystallogr. Sect. C 2015, 71, 9–18.
- 84M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al., Gaussian 16, Revis. C.01, Gaussian, Inc. n.d., Wallingford CT, 2016.
- 85R. Peverati, D. G. Truhlar, Phys. Chem. Chem. Phys. 2012, 14, 16187–16191.
- 86D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123–141.
- 87J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3094.
- 88R. L. Martin, J. Chem. Phys. 2003, 118, 4775–4777.
- 89T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 90T. Lu, F. Chen, J. Theor. Comput. Chem. 2012, 11, 163–183.