Design of a Highly Nanodispersed Pd–MgO/SiO2 Composite Catalyst with Multifunctional Activity for CH4 Reforming
Dr. Hyun You Kim
Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300 Austin, Texas,78712-0165 (USA)
Search for more papers by this authorCorresponding Author
Dr. Jung-Nam Park
Department of Chemistry, BK21 School of Chemical Materials Science and Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Republic of Korea), Fax: (+82) 512-471-6835
Department of Chemistry, BK21 School of Chemical Materials Science and Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Republic of Korea), Fax: (+82) 512-471-6835Search for more papers by this authorProf. Graeme Henkelman
Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300 Austin, Texas,78712-0165 (USA)
Search for more papers by this authorProf. Ji Man Kim
Department of Chemistry, BK21 School of Chemical Materials Science and Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Republic of Korea), Fax: (+82) 512-471-6835
Search for more papers by this authorDr. Hyun You Kim
Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300 Austin, Texas,78712-0165 (USA)
Search for more papers by this authorCorresponding Author
Dr. Jung-Nam Park
Department of Chemistry, BK21 School of Chemical Materials Science and Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Republic of Korea), Fax: (+82) 512-471-6835
Department of Chemistry, BK21 School of Chemical Materials Science and Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Republic of Korea), Fax: (+82) 512-471-6835Search for more papers by this authorProf. Graeme Henkelman
Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300 Austin, Texas,78712-0165 (USA)
Search for more papers by this authorProf. Ji Man Kim
Department of Chemistry, BK21 School of Chemical Materials Science and Department of Energy Science, Sungkyunkwan University, Suwon, 440-746 (Republic of Korea), Fax: (+82) 512-471-6835
Search for more papers by this authorGraphical Abstract
Power capsule: A catalyst for the chemical conversion of greenhouse gases into hydrogen and valuable chemicals as well as a design scheme for advanced catalysts for complicated multistep reaction is described (see picture). This SiO2-encapsulated, oxide-modified metal catalyst model can be a new standard for multistep heterogeneous catalysts.
Abstract
We describe a highly nanodispersed Pd–MgO/SiO2 composite catalyst synthesized by an in situ, one-pot, reverse microemulsion method as a multifunctional catalyst for low-temperature CH4 reforming. Experimental results suggested evidence for a synergistic interplay of each component and DFT calculations confirmed a multifunctional reaction mechanism of CH4 reforming and the importance of the Pd–MgO interface. We find that the Pd nanoparticle binds and dissociates CH4, that MgO activates CO2 and increases coking resistance, and that SiO2 prevents Pd sintering. CO spillover from Pd to MgO opens a faster pathway for CO production. A unique and groundbreaking feature of the present catalyst is the well-designed cooperation of each element that assures long-lasting, consistent, high- and low-temperature activity.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
cssc_201100798_sm_miscellaneous_information.pdf4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. F. B. Mitchell, T. C. Johns, J. M. Gregory, S. F. B. Tett, Nature 1995, 376, 501–504;
- 1bJ. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, M. Stievenard, Nature 1999, 399, 429–436;
- 1cC. D. Thomas, A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. Ferreira de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, S. E. Williams, Nature 2004, 427, 145–148.
- 2H. J. Smith, J. Fahrenkamp-Uppenbrink, R. Coontz, Science 2009, 325, 1641–1641.
- 3D. T. Whipple, P. J. A. Kenis, J. Phys. Chem. Lett. 2010, 1, 3451–3458.
- 4aS. Chu, Science 2009, 325, 1599–1599;
- 4bR. S. Haszeldine, Science 2009, 325, 1647–1652;
- 4cD. W. Keith, Science 2009, 325, 1654–1655;
- 4dG. T. Rochelle, Science 2009, 325, 1652–1654.
- 5S. E. Park, J. S. Yoo in Carbon Dioxide Utilization for Global Sustainability, Vol. 153 (Eds.: ), Elsevier, Amsterdam, 2004, pp. 303–314.
10.1016/S0167-2991(04)80269-6 Google Scholar
- 6M. C. J. Bradford, M. A. Vannice, Catal. Rev. 1999, 41, 1–42.
- 7M. S. Fan, A. Z. Abdullah, S. Bhatia, ChemCatChem 2009, 1, 192–208.
- 8aJ. R. Rostrupnielsen, J. H. B. Hansen, J. Catal. 1993, 144, 38–49;
- 8bD. A. Hickman, L. D. Schmidt, Science 1993, 259, 343–346.
- 9T. V. Choudhary, V. R. Choudhary, Angew. Chem. 2008, 120, 1852–1872;
10.1002/ange.200701237 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 1828–1847.
- 10
- 10aC. S. Chen, S. J. Feng, S. Ran, D. C. Zhu, W. Liu, H. J. M. Bouwmeester, Angew. Chem. 2003, 115, 5354–5356;
10.1002/ange.200351085 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5196–5198;
- 10bA. T. Ashcroft, A. K. Cheetham, M. L. H. Green, P. D. F. Vernon, Nature 1991, 352, 225–226;
- 10cA. T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell, P. D. F. Vernon, Nature 1990, 344, 319–321;
- 10dV. R. Choudhary, K. C. Mondal, A. S. Mamman, J. Catal. 2005, 233, 36–40;
- 10eF. Besenbacher, I. Chorkendorff, B. S. Clausen, B. Hammer, A. M. Molenbroek, J. K. Nørskov, I. Stensgaard, Science 1998, 279, 1913–1915;
- 10fH. S. Bengaard, J. K. Nørskov, J. Sehested, B. S. Clausen, L. P. Nielsen, A. M. Molenbroek, J. R. Rostrup-Nielsen, J. Catal. 2002, 209, 365–384;
- 10gF. Basile, P. Benito, P. Del Gallo, G. Fornasari, D. Gary, V. Rosetti, E. Scavetta, D. Tonelli, A. Vaccari, Chem. Commun. 2008, 2917–2919.
- 11J. H. Bitter, K. Seshan, J. A. Lercher, J. Catal. 1999, 183, 336–343.
- 12
- 12aJ. H. Bitter, K. Seshan, J. A. Lercher, J. Catal. 1998, 176, 93–101;
- 12bS. Menad, P. Ferreira-Aparicio, O. Cherifi, A. Guerrero-Ruiz, I. Rodriguez-Ramos, Catal. Lett. 2003, 89, 63–67;
- 12cS. Therdthianwong, C. Siangchin, A. Therdthianwong, Fuel Process. Technol. 2008, 89, 160–168.
- 13S. Tomiyama, R. Takahashi, S. Sato, T. Sodesawa, S. Yoshida, Appl. Catal. A: Gen. 2003, 241, 349–361.
- 14
- 14aT. I. Doukov, T. M. Iverson, J. Seravalli, S. W. Ragsdale, C. L. Drennan, Science 2002, 298, 567–572;
- 14bM. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000, 122, 1466–1478;
- 14cK. G. Azzam, I. V. Babich, K. Seshan, L. Lefferts, J. Catal. 2007, 251, 153–162;
- 14dJ. B. Park, J. Graciani, J. Evans, D. Stacchiola, S. D. Senanayake, L. Barrio, P. Liu, J. F. Sanz, J. Hrbek, J. A. Rodriguez, J. Am. Chem. Soc. 2010, 132, 356–363.
- 15H. Y. Kim, H. M. Lee, J.-N. Park, J. Phys. Chem. C 2010, 114, 7128–7131.
- 16J.-N. Park, E. W. McFarland, J. Catal. 2009, 266, 92–97.
- 17J.-N. Park, A. J. Forman, W. Tang, J. H. Cheng, Y. S. Hu, H. F. Lin, E. W. McFarland, Small 2008, 4, 1694–1697.
- 18A. J. Forman, J.-N. Park, W. Tang, Y. S. Hu, G. D. Stucky, E. W. McFarland, ChemCatChem 2010, 2, 1318–1324.
- 19S. Takenaka, Y. Orita, H. Umebayashi, H. Matsune, M. Kishida, Appl. Catal. A: Gen. 2008, 351, 189–194.
- 20
- 20aJ. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37–46;
- 20bH. Falsig, B. Hvolbaek, I. S. Kristensen, T. Jiang, T. Bligaard, C. H. Christensen, J. K. Nørskov, Angew. Chem. 2008, 120, 4913–4917;
10.1002/ange.200801479 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 4835–4839;
- 20cH. Y. Kim, H. M. Lee, R. G. S. Pala, V. Shapovalov, H. Metiu, J. Phys. Chem. C 2008, 112, 12398–12408.
- 21G. Jones, J. Geest Jakobsen, S. S. Shim, J. Kleis, M. P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J. R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested, J. K. Nørskov, J. Catal. 2008, 259, 147–160.
- 22M. Maestri, D. G. Vlachos, A. Beretta, G. Groppi, E. Tronconi, J. Catal. 2008, 259, 211–222.
- 23P. W. van Grootel, E. J. M. Hensen, R. A. van Santen, Langmuir 2010, 26, 16339–16348.
- 24A. Yamaguchi, E. Iglesia, J. Catal. 2010, 274, 52–63.
- 25P. Atkins, J. D. Paula, Physical Chemistry, 8th ed., Oxford, New York, 2006.
- 26
- 26aG. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50;
- 26bG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186.
- 27B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B 1999, 59, 7413–7421.