Membrane Microreactors: Gas–Liquid Reactions Made Easy
Corresponding Author
Dr. Timothy Noël
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands) http://www.tue.nl/staff/T.Noel
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands) http://www.tue.nl/staff/T.NoelSearch for more papers by this authorProf. Dr. Volker Hessel
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands) http://www.tue.nl/staff/T.Noel
Search for more papers by this authorCorresponding Author
Dr. Timothy Noël
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands) http://www.tue.nl/staff/T.Noel
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands) http://www.tue.nl/staff/T.NoelSearch for more papers by this authorProf. Dr. Volker Hessel
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands) http://www.tue.nl/staff/T.Noel
Search for more papers by this authorGraphical Abstract
Getting phases together: Membrane microreactors provide new opportunities for gas–liquid reactions. The advantages of this microreactor concept are a large interfacial area, a greater flexibility with regard to flow rates, and the opportunity to immobilize a catalyst on the membrane.
References
- 1For selected reviews about gas–liquid microreactors, see:
- 1aP. Sobieszuk, J. Aubin, R. Phorecki, Chem. Eng. Technol. 2012, 35, 1346–1358;
- 1bM. N. Kashid, L. Kiwi-Minsker, Ind. Eng. Chem. Res. 2009, 48, 6465–6485;
- 1cG. Chen, J. Yue, Q. Yuan, Chin. J. Chem. Eng. 2008, 16, 663–669;
- 1dA. Günther, K. F. Jensen, Lab Chip 2006, 6, 1487–1503;
- 1eV. Hessel, P. Angeli, A. Gavriilidis, H. Löwe, Ind. Eng. Chem. Res. 2005, 44, 9750–9769.
- 2For selected reviews dealing with flow chemistry, see:
- 2aV. Hessel, I. Vural-Gursel, Q. Wang, T. Noël, J. Lang, Chem. Eng. Technol. 2012, 35, 1184–1204;
- 2bT. Noël, S. L. Buchwald, Chem. Soc. Rev. 2011, 40, 5010–5029;
- 2cR. L. Hartman, J. P. McMullen, K. F. Jensen, Angew. Chem. 2011, 123, 7642–7661;
10.1002/ange.201004637 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 7502–7519;
- 2dD. Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675–680;
- 2eK. Geyer, T. Gustafsson, P. H. Seeberger, Synlett 2009, 2382–2391;
- 2fJ.-i. Yoshida, A. Nagaki, T. Yamada, Chem. Eur. J. 2008, 14, 7450–7459.
- 3For selected papers employing segmented gas–liquid flow, see:
- 3aM. Hamano, K. D. Nagy, K. F. Jensen, Chem. Commun. 2012, 48, 2086–2088;
- 3bC. P. Park, M. M. Van Wingerden, S.-Y. Han, D.-P. Kim, R. H. Grubbs, Org. Lett. 2011, 13, 2398–2401;
- 3cE. R. Murphy, J. R. Martinelli, N. Zaborenko, S. L. Buchwald, K. F. Jensen, Angew. Chem. 2007, 119, 1764–1767;
10.1002/ange.200604175 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 1734–1737;
- 3dM. T. Rahman, T. Fukuyama, N. Kamata, M. Sato, I. Ryu, Chem. Commun. 2006, 2236–2238.
- 4For selected papers utilizing annular gas–liquid flow, see:
- 4aN. Wang, T. Matsumoto, M. Ueno, H. Miyamura, S. Kobayashi, Angew. Chem. 2009, 121, 4838–4840;
10.1002/ange.200900565 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4744–4746;
- 4bP. W. Miller, L. E. Jennings, A. J. de Mello, A. D. Gee, N. J. Long, R. Vilar, Adv. Synth. Catal. 2009, 351, 3260–3268;
- 4cJ. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno, T. Kitamori, S. Kobayashi, Science 2004, 304, 1305–1308.
- 5Selected papers pertaining falling-film microreactors, see:
- 5aM. Al-Rawashdeh, A. Cantu-Perez, D. Ziegenbalg, P. Lob, A. Gavriilidis, V. Hessel, F. Schonfeld, Chem. Eng. J. 2012, 179, 318–329;
- 5bN. Steinfeldt, R. Abdallah, U. Dingerdissen, K. Jähnish, Org. Process Res. Dev. 2007, 11, 1025–1031;
- 5cK. K. Yeong, A. Gavriilidis, R. Zapf, V. Hessel, Catal. Today 2003, 81, 641–651;
- 5dK. Jähnisch, M. Baerns, V. Hessel, W. Ehrfeld, V. Haverkamp, H. Löwe, C. Wille, A. Guber, J. Fluorine Chem. 2000, 105, 117–128.
- 6
- 6aM. Zanfir, X. Sun, A. Gavriilidis, Ind. Eng. Chem. Res. 2008, 47, 8995–9005;
- 6bR. Abdallah, B. Fumey, V. Meille, C. de Bellefon, Catal. Today 2007, 125, 34–39.
- 7
- 7aC. P. Park, R. A. Maurya, J. H. Lee, D.-P. Kim, Lab Chip 2011, 11, 1941–1945;
- 7bR. A. Maurya, C. P. Park, D.-P. Kim, Beilstein J. Org. Chem. 2011, 7, 1158–1163;
- 7cC. P. Park, D.-P. Kim, J. Am. Chem. Soc. 2010, 132, 10102–10106.
- 8
- 8aS. L. Bourne, M. O’Brien, S. Kasinathan, P. Koos, P. Tolstoy, D. X. Hu, R. W. Bates, B. Martin, B. Schenkel, S. V. Ley, ChemCatChem. 2013, 5, 159–172;
- 8bS. L. Bourne, P. Koos, M. O’Brien, B. Martin, B. Schenkel, I. R. Baxendale, S. V. Ley, Synlett 2011, 2643–2647;
- 8cP. B. Cranwell, M. O’Brien, D. L. Browne, P. Koos, A. Polyzos, M. Pena-Lopez, S. V. Ley, Org. Biomol. Chem. 2012, 10, 5774–5779;
- 8dD. L. Browne, M. O’Brien, P. Koos, P. B. Cranwell, A. Polyzos, S. V. Ley, Synlett 2012, 1402–1406;
- 8eS. Kasinathan, S. L. Bourne, P. Tolstoy, P. Koos, M. O’Brien, R. W. Bates, I. R. Baxendale, S. V. Ley, Synlett 2011, 2648–2651;
- 8fT. P. Petersen, A. Polyzos, M. O’Brien, T. Ulven, I. R. Baxendale, S. V. Ley, ChemSusChem 2012, 5, 274–277;
- 8gP. Koos, U. Gross, A. Polyzos, M. O’Brien, I. Baxendale, S. V. Ley, Org. Biomol. Chem. 2011, 9, 6903–6908;
- 8hS. Newton, S. V. Ley, E. C. Arce, D. M. Grainger, Adv. Synth. Catal. 2012, 354, 1805–1812;
- 8iM. O’Brien, N. Taylor, A. Polyzos, I. R. Baxendale, S. V. Ley, Chem. Sci. 2011, 2, 1250–1257;
- 8jA. Polyzos, M. O’Brien, T. P. Petersen, I. R. Baxendale, S. V. Ley, Angew. Chem. 2011, 123, 1222–1225; Angew. Chem. Int. Ed. 2011, 50, 1190–1193;
- 8kM. O’Brien, I. R. Baxendale, S. V. Ley, Org. Lett. 2010, 12, 1596–1598.
- 9aM. A. Mercadante, C. B. Kelly, C. Lee, N. E. Leadbeater, Org. Process Res. Dev. 2012, 16, 1064–1068;
- 9bM. A. Mercadante, N. E. Leadbeater, Org. Biomol. Chem. 2011, 9, 6575–6578.
- 10
- 10aH. C. Aran, H. Klooster, J. M. Jani, M. Wessling, L. Lefferts, R. G. H. Lammertink, Chem. Eng. J. 2012, 207–208, 814–821;
- 10bH. C. Aran, D. Salamon, T. Rijnaarts, G. Mul, M. Wessling, R. G. H. Lammertink, J. Photochem. Photobiol. A 2011, 225, 36–41.
- 11R. Dittmeyer, K. Svajda, M. Reif, Top. Catal. 2004, 29, 3–27.