Pressure-Accelerated Azide–Alkyne Cycloaddition: Micro Capillary versus Autoclave Reactor Performance
Svetlana Borukhova
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Search for more papers by this authorDr. Andreas D. Seeger
Technische Chemie III, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt (Germany)
Search for more papers by this authorDr. Timothy Noël
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Search for more papers by this authorQi Wang
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Search for more papers by this authorProf. Dr. Markus Busch
Technische Chemie III, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Volker Hessel
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)Search for more papers by this authorSvetlana Borukhova
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Search for more papers by this authorDr. Andreas D. Seeger
Technische Chemie III, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt (Germany)
Search for more papers by this authorDr. Timothy Noël
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Search for more papers by this authorQi Wang
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Search for more papers by this authorProf. Dr. Markus Busch
Technische Chemie III, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Volker Hessel
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)
Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands)Search for more papers by this authorGraphical Abstract
Press to access! The potential of pressure in chemical intensification of intrinsic kinetics of 1,3-dipolar cycloaddition is investigated along with high temperature and concentration effects. Two reactors are compared, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor for up to 400 bar. Reaction speedup and increases in space-time yields are reached while widening process windows of favorable operation to selectively produce Rufinamide precursor in good yields.
Abstract
Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide–alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide–alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space–time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide–alkyne cycloadditions to widen the scope of the presented methodology.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc_201403034_sm_miscellaneous_information.pdf886 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1I. Chorkendorff, J. W. Niemantsverdriet in Concepts Mod. Catal. Kinet., Wiley-VCH, 2005, pp. 23–78.
10.1002/3527602658.ch2 Google Scholar
- 2
- 2aK. Matsumoto, H. Hamana, H. Iida, Helv. Chim. Acta 2005, 88, 2033–2234;
- 2bR. Bini, M. Ceppatelli, M. Citroni, V. Schettino, Chem. Phys. 2012, 398, 262–268.
- 3
- 3aV. Hessel, Chem. Eng. Technol. 2009, 32, 1655–1681;
- 3bS. Borukhova, V. Hessel in Process Intensif. Green Chem. (Eds.: ), Wiley, Chichester, UK 2013, pp. 91–156;
10.1002/9781118498521.ch4 Google Scholar
- 3cT. Razzaq, T. N. Glasnov, C. O. Kappe, Chem. Eng. Technol. 2009, 32, 1702–1716;
- 3dV. Hessel, D. Kralisch, N. Kockmann, T. Noël, Q. Wang, ChemSusChem 2013, 6, 746–789.
- 4R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew. Chem. Int. Ed. 2011, 50, 7502–7519; Angew. Chem. 2011, 123, 7642–7661.
- 5
- 5aL. Malet-Sanz, F. Susanne, J. Med. Chem. 2012, 55, 4062–4098;
- 5bP. T. Baraldi, V. Hessel, Green Process Synth. 2012, 1, 149–167;
- 5cT. Noël, S. L. Buchwald, Chem. Soc. Rev. 2011, 40, 5010–5029.
- 6
- 6aS. Borukhova, T. Noël, B. Metten, E. de Vos, V. Hessel, ChemSusChem 2013, 6, 2220–2225;
- 6bH. Kobayashi, B. Driessen, D. J. G. P. van Osch, A. Talla, S. Ookawara, T. Noël, V. Hessel, Tetrahedron 2013, 69, 2885–2890;
- 6cT. Illg, V. Hessel, P. Löb, J. C. Schouten, ChemSusChem 2011, 4, 392–398;
- 6dT. Illg, P. Löb, V. Hessel, Biol. Med. Chem. 2010, 18, 3707–3719;
- 6eT. Razzaq, T. N. Glasnov, C. O. Kappe, Eur. J. Org. Chem. 2009, 1321–1325;
- 6fN. Kockmann, M. Gottsponer, B. Zimmermann, D. M. Roberge, Chem. Eur. J. 2008, 14, 7470–7477.
- 7
- 7aF. Benito-Lopez, R. M. Tiggelaar, K. Salbut, J. Huskens, R. J. M. Egberink, D. N. Reinhoudt, H. J. G. E. Gardeniers, W. Verboom, Lab Chip 2007, 7, 1345–1351;
- 7bW. Verboom, Chem. Eng. Technol. 2009, 32, 1695–1701;
- 7cY. Zhao, G. Chen, C. Ye, Q. Yuan, Chem. Eng. Sci. 2013, 87, 122–132;
- 7dA. Leclerc, M. Alamé, D. Schweich, P. Pouteau, C. Delattre, C. de Bellefon, Lab Chip 2008, 8, 814–817;
- 7eF. Trachsel, C. Hutter, P. R. von Rohr, Chem. Eng. J. 2008, 135, S 309–S316;
- 7fJ. Kobayashi, Y. Mori, S. Kobayashi, Chem. Commun. 2005, 2567–2568.
- 8
- 8aW. Grochala, R. Hoffmann, J. Feng, N. W. Ashcroft, Angew. Chem. Int. Ed. 2007, 46, 3620–3642;
Angew. Chem. 2007, 119, 3694–3717;
10.1002/ange.200602485 Google Scholar
- 8bA. Sharma, J. H. Scott, G. D. Cody, M. L. Fogel, R. M. Hazen, R. J. Hemley, W. T. Huntress, Science 2002, 295, 1514–1516;
- 8cA. Y. Rulev, H. Kotsuki, J. Maddaluno, Green Chem. 2012, 14, 503.
- 9
- 9aJ. Keybl, K. F. Jensen, Ind. Eng. Chem. Res. 2011, 50, 11013–11022;
- 9bR. M. Tiggelaar, F. Benito-López, D. C. Hermes, H. Rathgen, R. J. M. Egberink, F. G. Mugele, D. N. Reinhoudt, A. van den Berg, W. Verboom, H. J. G. E. Gardeniers, Chem. Eng. J. 2007, 131, 163–170;
- 9cN. Lorber, F. Sarrazin, P. Guillot, P. Panizza, A. Colin, B. Pavageau, C. Hany, P. Maestro, S. Marre, T. Delclos, C. Aymonier, P. Subra, L. Prat, C. Gourdone, E. Mignard, Lab Chip 2011, 11, 779–787.
- 10
- 10aH. S. P. Rao, R. Murali, A. Taticchi, H. W. Scheeren, Eur. J. Org. Chem. 2001, 2869–2876;
- 10bL. G. Jenner, J. Phys. Org. Chem. 1999, 12, 619–625;
- 10cZ. Shi, W. Liang, J. Luo, S. Huang, B. M. Polishak, X. Li, T. R. Younkin, B. a. Block, A. K.-Y. Jen, Chem. Mater. 2010, 22, 5601–5608;
- 10dR. E. Martin, F. Morawitz, C. Kuratli, A. M. Alker, A. I. Alanine, Eur. J. Org. Chem. 2012, 47–52;
- 10eL. Minuti, A. Temperini, E. Ballerini, J. Org. Chem. 2012, 77, 7923–7931;
- 10fH. Chen, B.-B. Ni, F. Gao, Y. Ma, Green Chem. 2012, 14, 2703–2705.
- 11A. Vidis, G. Laurenczy, E. Kuesters, G. Sedelmeier, P. J. Dyson, J. Phys. Org. Chem. 2007, 20, 109–114.
- 12
- 12aA. Chrétien, I. Chataigner, S. R. Piettre, Tetrahedron 2005, 61, 7907–7915;
- 12bY. Misumi, K. Matsumoto, Angew. Chem. Int. Ed. 2002, 41, 1031–1033;
10.1002/1521-3773(20020315)41:6<1031::AID-ANIE1031>3.0.CO;2-K CASPubMedWeb of Science®Google ScholarAngew. Chem. 2002, 114, 1073–1075;10.1002/1521-3757(20020315)114:6<1073::AID-ANGE1073>3.0.CO;2-J Google Scholar
- 12cP. Kwiatkowski, M. Asztemborska, J. Jurczak, Tetrahedron: Asymmetry 2004, 15, 3189–3194;
- 12dJ. Matsuo, S. Sasaki, H. Tanaka, H. Ishibashi, J. Am. Chem. Soc. 2008, 130, 11600–11601.
- 13U. Tilstam, T. Defrance, T. Giard, M. D. Johnson, Org. Process Res. Dev. 2009, 13, 321–323.
- 14
- 14aR. Huisgen, Proc. Chem. Soc. 1961, 357–396;
- 14bR. Huisgen, Angew. Chem. Int. Ed. Engl. 1963, 2, 565–598;
10.1002/anie.196305651 Google ScholarAngew. Chem. 1963, 75, 604–637;
- 14cG. T. Anderson, J. R. Henry, S. M. Weinreb, J. Org. Chem. 1991, 56, 6946–6948;
- 14dV. Melai, A. Brillante, P. Zanirato, J. Chem. Soc. Perkin Trans. 2 1998, 2447–2450;
- 14eJ.-C. Fan, J. Liang, Y. Wang, Z.-C. Shang, THEOCHEM 2007, 821, 145–152;
- 14fH. Elamari, I. Jlalia, C. Louet, J. Herscovici, F. Meganem, C. Girard, Tetrahedron: Asymmetry 2010, 21, 1179–1183.
- 15
- 15aH. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–2021;
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CASPubMedWeb of Science®Google ScholarAngew. Chem. 2001, 113, 2056–2075;
- 15bH. C. Kolb, K. B. Sharpless, Drug Discovery Today 2003, 8, 1128–1137;
- 15cL. D. Pachón, J. H. van Maarseveen, G. Rothenberg, Adv. Synth. Catal. 2005, 347, 811–815;
- 15dJ. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 2007, 36, 1249–1262.
- 16J. Wang, G. Sui, V. P. Mocharla, R. J. Lin, M. E. Phelps, H. C. Kolb, H.-R. Tseng, Angew. Chem. Int. Ed. 2006, 45, 5276–5281;
Angew. Chem. 2006, 118, 5402–5407.
10.1002/ange.200601677 Google Scholar
- 17
- 17aC. D. Smith, I. R. Baxendale, S. Lanners, J. J. Hayward, S. C. Smith, S. V. Ley, Org. Biomol. Chem. 2007, 5, 1559–1561;
- 17bA. R. Bogdan, K. James, Chem. Eur. J. 2010, 16, 14506–14512;
- 17cA. C. Varas, T. Noël, Q. Wang, V. Hessel, ChemSusChem 2012, 5, 1703–1707;
- 17eL. Wang, S. Peng, L. J. T. Danence, Y. Gao, J. Wang, Chem. Eur. J. 2012, 18, 6088–6093.
- 18M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011, 7, 442–495.
- 19M. E. Lemmon, E. H. Kossoff, Curr. Treat. Options Neurol. 2013, 15, 519–528.
- 20P. Zhang, M. G. Russell, T. F. Jamison, Org. Process Res. Dev., 2014, 18, 1567–1570.
- 21D. Wang, M. Zhao, X. Liu, Y. Chen, N. Li, B. Chen, Org. Biomol. Chem. 2012, 10, 229–231.
- 22J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302–1315.
- 23
- 23aV. Hessel, I. Vural Gürsel, Q. Wang, T. Noël, J. Lang, Chem. Eng. Technol. 2012, 35, 1184–1204;
- 23bI. Vural-Gürsel, Q. Wang, T. Noël, V. Hessel, J. T. Tinge, Ind. Eng. Chem. Res. 2013, 52, 7827–7835.
- 24C. Rosenfeld, C. Serra, C. Brochon, V. Hessel, G. Hadziioannou, Chem. Eng. J. 2008, 135, S 242–S246.