Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics
Dr. Ronan Hinchet
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.edu
Search for more papers by this authorWanchul Seung
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.edu
Search for more papers by this authorCorresponding Author
Prof. Sang-Woo Kim
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.edu
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.eduSearch for more papers by this authorDr. Ronan Hinchet
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.edu
Search for more papers by this authorWanchul Seung
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.edu
Search for more papers by this authorCorresponding Author
Prof. Sang-Woo Kim
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.edu
School of Advanced Materials Science and Engineering, Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University (SKKU), Suwon 440-746 (Republic of Korea) http://nesel.skku.eduSearch for more papers by this authorGraphical Abstract
Electrifying progress: Mechanical energy harvesters are becoming a valuable energy source for autonomous systems. Specifically, flexible triboelectric nanogenerators are quickly evolving. They are now easy to integrate and exhibit good performance, both of which make them perfect candidates for many applications. This review introduces this new technology and presents its recent progress and some of the latest trends.
Abstract
Recently, smart systems have met with large success. At the origin of the internet of things, they are a key driving force for the development of wireless, sustainable, and independent autonomous smart systems. In this context, autonomy is critical, and despite all the progress that has been made in low-power electronics and batteries, energy harvesters are becoming increasingly important. Thus, harvesting mechanical energy is essential, as it is widespread and abundant in our daily life environment. Among harvesters, flexible triboelectric nanogenerators (TENGs) exhibit good performance, and they are easy to integrate, which makes them perfect candidates for many applications and, therefore, crucial to develop. In this review paper, we first introduce the fundamentals of TENGs, including their four basic operation modes. Then, we discuss the different improvement parameters. We review some progress made in terms of performance and integration that have been possible through the understanding of each operation mode and the development of innovative structures. Finally, we present the latest trends, structures, and materials in view of future improvements and applications.
References
- 1A. Nathan, A. Ahnood, M. T. Cole, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, W. I. Milne, Proc. IEEE 2012, 100, 1486–1517.
- 2Flexible Electronics, 11 (Eds.: W. S. Wong, A. Salleo), Springer, Boston, MA, 2009.
- 3Z. L. Wang, Sci. Am. 2008, 298, 82–87.
- 4Z. L. Wang, Adv. Mater. 2012, 24, 280–285.
- 5Z. L. Wang, W. Wu, Angew. Chem. Int. Ed. 2012, 51, 11700–11721;
Angew. Chem. 2012, 124, 11868–11891.
10.1002/ange.201201656 Google Scholar
- 6Z. L. Wang, J. Song, Science 2006, 312, 242–246.
- 7Z. L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Mater. Today 2012, 15, 532–543.
- 8F.-R. Fan, Z.-Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328–334.
- 9F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 3109–3114.
- 10G. S. P. Castle, J. Electrost. 1997, 40–41, 13–20.
- 11A. F. Diaz, R. M. Felix-Navarro, J. Electrost. 2004, 62, 277–290.
- 12L. S. McCarty, G. M. Whitesides, Angew. Chem. Int. Ed. 2008, 47, 2188–2207;
Angew. Chem. 2008, 120, 2218–2239.
10.1002/ange.200701812 Google Scholar
- 13H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, B. A. Grzybowski, Science 2011, 333, 308–312.
- 14Z. L. Wang, ACS Nano 2013, 7, 9533–9557.
- 15Z. L. Wang, Faraday Discuss. 2014, 176, 447–458.
- 16S. Wang, L. Lin, Z. L. Wang, Nano Energy 2015, 11, 436–462.
- 17X.-S. Zhang, M.-D. Han, B. Meng, H.-X. Zhang, Nano Energy 2015, 11, 304–322.
- 18Y. Yang, H. Zhang, Z.-H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, Z. L. Wang, ACS Nano 2013, 7, 9213–9222.
- 19G. Zhu, W. Q. Yang, T. Zhang, Q. Jing, J. Chen, Y. S. Zhou, P. Bai, Z. L. Wang, Nano Lett. 2014, 14, 3208–3213.
- 20G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z. L. Wang, Nano Lett. 2013, 13, 847–853.
- 21L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, Z. L. Wang, ACS Nano 2013, 7, 8266–8274.
- 22G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. Jing, J. Chen, Z. L. Wang, Adv. Mater. 2014, 26, 3788–3796.
- 23S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z. L. Wang, Nano Lett. 2013, 13, 2226–2233.
- 24L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z. L. Wang, Nano Lett. 2013, 13, 2916–2923.
- 25L. Lin, S. Wang, S. Niu, C. Liu, Y. Xie, Z. L. Wang, ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.
- 26J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T.-C. Hou, Z. L. Wang, Adv. Mater. 2013, 25, 6094–6099.
- 27J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su, Z. L. Wang, ACS Nano 2014, 8, 2649–2657.
- 28Y. H. Do, W. S. Jung, M. G. Kang, C. Y. Kang, S. J. Yoon, Sens. Actuators A 2013, 200, 51–55.
- 29S. Lee, S.-H. Bae, L. Lin, Y. Yang, C. Park, S.-W. Kim, S. N. Cha, H. Kim, Y. J. Park, Z. L. Wang, Adv. Funct. Mater. 2013, 23, 2445–2449.
- 30K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, K. J. Lee, Nano Lett. 2010, 10, 4939–4943.
- 31L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang, X. Wen, Z. L. Wang, Nano Energy 2013, 2, 75–81.
- 32Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, Z. L. Wang, J. Phys. Chem. Lett. 2012, 3, 3599–3604.
- 33S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, Nat. Nanotechnol. 2010, 5, 366–373.
- 34Y. Qi, M. C. McAlpine, Energy Environ. Sci. 2010, 3, 1275.
- 35J. A. Wiles, B. A. Grzybowski, A. Winkleman, G. M. Whitesides, Anal. Chem. 2003, 75, 4859–4867.
- 36D. K. Davies, J. Phys. D 1969, 2, 1533–1537.
- 37J. Henniker, Nature 1962, 196, 474–474.
- 38S. Boisseau, G. Despesse, A. Sylvestre, Smart Mater. Struct. 2010, 19, 075015.
- 39Y. Suzuki, IEEJ Trans. Electr. Electron. Eng. 2011, 6, 101–111.
- 40S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576.
- 41S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, Z. L. Wang, Adv. Mater. 2013, 25, 6184–6193.
- 42S. Niu, S. Wang, Y. Liu, Y. S. Zhou, L. Lin, Y. Hu, K. C. Pradel, Z. L. Wang, Energy Environ. Sci. 2014, 7, 2339.
- 43S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 3332–3340.
- 44Y. Yang, H. Zhang, J. Chen, Q. Jing, Y. S. Zhou, X. Wen, Z. L. Wang, ACS Nano 2013, 7, 7342–7351.
- 45W. Yang, J. Chen, X. Wen, Q. Jing, J. Yang, Y. Su, G. Zhu, W. Wu, Z. L. Wang, ACS Appl. Mater. Interfaces 2014, 6, 7479–7484.
- 46B. Meng, X. Cheng, X. Zhang, M. Han, W. Liu, H. Zhang, Appl. Phys. Lett. 2014, 104, 103904.
- 47B. Meng, W. Tang, Z. Too, X. Zhang, M. Han, W. Liu, H. Zhang, Energy Environ. Sci. 2013, 6, 3235.
- 48S. Niu, Y. Liu, X. Chen, S. Wang, Y. S. Zhou, L. Lin, Y. Xie, Z. Lin, Nano Energy 2015, 12, 760–774.
- 49S. Wang, Y. Xie, S. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818–2824.
- 50Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z. L. Wang, Adv. Mater. 2014, 26, 6599–6607.
- 51Y. Yang, H. Zhang, J. Chen, S. Lee, T.-C. Hou, Z. L. Wang, Energy Environ. Sci. 2013, 6, 1744.
- 52S. Wang, L. Lin, Z. L. Wang, Nano Lett. 2012, 12, 6339–6346.
- 53S. Lee, Y. Lee, D. Kim, Y. Yang, L. Lin, Z.-H. Lin, W. Hwang, Z. L. Wang, Nano Energy 2013, 2, 1113–1120.
- 54Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang, Adv. Mater. 2014, 26, 5851–5856.
- 55K. Y. Lee, J. Chun, J.-H. Lee, K. N. Kim, N.-R. Kang, J.-Y. Kim, M. H. Kim, K.-S. Shin, M. K. Gupta, J. M. Baik, S.-W. Kim, Adv. Mater. 2014, 26, 5037–5042.
- 56X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y. Zhu, Z.-H. Li, W. Wang, H.-X. Zhang, Nano Lett. 2013, 13, 1168–1172.
- 57H. Zhang, Y. Yang, T.-C. Hou, Y. Su, C. Hu, Z. L. Wang, Nano Energy 2013, 2, 1019–1024.
- 58T.-C. Hou, Y. Yang, H. Zhang, J. Chen, L.-J. Chen, Z. L. Wang, Nano Energy 2013, 2, 856–862.
- 59W. Tang, B. Meng, H. X. Zhang, Nano Energy 2013, 2, 1164–1171.
- 60X.-S. Zhang, M.-D. Han, R.-X. Wang, B. Meng, F.-Y. Zhu, X.-M. Sun, W. Hu, W. Wang, Z.-H. Li, H.-X. Zhang, Nano Energy 2014, 4, 123–131.
- 61Y. H. Ko, N. Goli, J. S. Yu, RSC Adv. 2015, 5, 6437–6442.
- 62Z.-H. Lin, G. Cheng, L. Lin, S. Lee, Z. L. Wang, Angew. Chem. Int. Ed. 2013, 52, 12545–12549;
Angew. Chem. 2013, 125, 12777–12781.
10.1002/ange.201307249 Google Scholar
- 63Y. H. Ko, S. H. Lee, J. W. Leem, J. S. Yu, RSC Adv. 2014, 4, 10216.
- 64M. Han, X.-S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang, H. Zhang, ACS Nano 2013, 7, 8554–8560.
- 65F. R. Fan, J. Luo, W. Tang, C. Li, C. Zhang, Z. Tian, Z. L. Wang, J. Mater. Chem. A 2014, 2, 13219–13225.
- 66W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, S.-W. Kim, ACS Nano 2015, 9, 3501–3509.
- 67W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, Z. L. Wang, ACS Nano 2013, 7, 11317–11324.
- 68C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung, K. J. Lee, Nano Lett. 2014, 14, 7031–7038.
- 69J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu, Z. L. Wang, J. Zhou, ACS Nano 2014, 8, 6273–6280.
- 70G. Zhu, P. Bai, J. Chen, Z. L. Wang, Nano Energy 2013, 2, 688–692.
- 71S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, Z. L. Wang, Adv. Mater. 2014, 26, 6720–6728.
- 72S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K. C. Pradel, Z. L. Wang, ACS Nano 2013, 7, 11263–11271.
- 73W. Tang, T. Zhou, C. Zhang, F. R. Fan, C. B. Han, Z. L. Wang, Nanotechnology 2014, 25, 225402.
- 74Y. Zheng, L. Cheng, M. Yuan, Z. Wang, L. Zhang, Y. Qin, T. Jing, Nanoscale 2014, 6, 7842–7846.
- 75S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K.-S. Shin, D. Kim, S. K. Kim, K. H. Lee, H.-J. Shin, D.-W. Kim, S.-W. Kim, Adv. Mater. 2014, 26, 3918–3925.
- 76B. Meng, W. Tang, X. Zhang, M. Han, W. Liu, H. Zhang, Nano Energy 2013, 2, 1101–1106.
- 77L. Zhang, F. Xue, W. Du, C. Han, C. Zhang, Z. Wang, Nano Res. 2014, 7, 1215–1223.
- 78X. Pu, L. Li, H. Song, C. Du, Z. Zhao, C. Jiang, G. Cao, W. Hu, Z. L. Wang, Adv. Mater. 2015, 27, 2472–2478.
- 79W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen, Y. Su, G. Zhu, P. Bai, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 4090–4096.
- 80W. Du, X. Han, L. Lin, M. Chen, X. Li, C. Pan, Z. L. Wang, Adv. Energy Mater. 2014, 4, 1301592.
- 81G. Zhu, J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. Jing, C. Pan, Z. L. Wang, Nano Lett. 2013, 13, 2282–2289.
- 82W. Tang, C. Zhang, C. B. Han, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 6684–6690.
- 83Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, Y. Su, Z. Wu, Z. L. Wang, Nano Energy 2014, 6, 129–136.
- 84P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang, Z. L. Wang, ACS Nano 2013, 7, 6361–6366.
- 85Q. Jing, G. Zhu, W. Wu, P. Bai, Y. Xie, R. P. S. Han, Z. L. Wang, Nano Energy 2014, 10, 305–312.
- 86S. Jung, J. Lee, T. Hyeon, M. Lee, D.-H. Kim, Adv. Mater. 2014, 26, 6329–6334.
- 87W. Liu, M. Han, X. Sun, B. Meng, X.-S. Zhang, H. Zhang, Nano Energy 2014, 9, 401–407.
- 88L. Lin, Y. Xie, S. Niu, S. Wang, P.-K. Yang, Z. L. Wang, ACS Nano 2015, 9, 922–930.
- 89Q. Leng, H. Guo, X. He, G. Liu, Y. Kang, C. Hu, Y. Xi, J. Mater. Chem. A 2014, 2, 19427–19434.
- 90Q. Jing, G. Zhu, P. Bai, Y. Xie, J. Chen, R. P. S. Han, Z. L. Wang, ACS Nano 2014, 8, 3836–3842.
- 91S. Wang, S. Niu, J. Yang, L. Lin, Z. L. Wang, ACS Nano 2014, 8, 12004–12013.
- 92T. Zhou, C. Zhang, C. B. Han, F. R. Fan, W. Tang, Z. L. Wang, ACS Appl. Mater. Interfaces 2014, 6, 14695–14701.
- 93Y. Su, X. Wen, G. Zhu, J. Yang, J. Chen, P. Bai, Z. Wu, Y. Jiang, Z. L. Wang, Nano Energy 2014, 9, 186–195.
- 94G. Zhu, Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, Z. L. Wang, ACS Nano 2014, 8, 6031–6037.
- 95Y. Yang, H. Zhang, Y. Liu, Z.-H. Lin, S. Lee, Z. Lin, C. P. Wong, Z. L. Wang, ACS Nano 2013, 7, 2808–2813.
- 96Y. Hu, J. Yang, S. Niu, W. Wu, Z. L. Wang, ACS Nano 2014, 8, 7442–7450.
- 97K. Zhang, X. Wang, Y. Yang, Z. L. Wang, ACS Nano 2015, 9, 3521–3529.
- 98P.-K. Yang, Z.-H. Lin, K. C. Pradel, L. Lin, X. Li, X. Wen, J.-H. He, Z. L. Wang, ACS Nano 2015, 9, 901–907.
- 99R. Que, Y. Huang, Q. Li, H. Yao, B. Geng, M. Shao, ACS Appl. Mater. Interfaces 2014, 6, 19752–19757.
- 100S. A. Han, K. H. Lee, T.-H. Kim, W. Seung, S. K. Lee, S. Choi, B. Kumar, R. Bhatia, H.-J. Shin, W.-J. Lee, S. Kim, H. S. Kim, J.-Y. Choi, S.-W. Kim, Nano Energy 2015, 12, 556–566.