A Robust Molecular Catalyst Generated In Situ for Photo- and Electrochemical Water Oxidation
Dr. Hussein A. Younus
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 36514 Egypt
Search for more papers by this authorDr. Nazir Ahmad
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Search for more papers by this authorDr. Adeel H. Chughtai
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
Search for more papers by this authorDr. Matthias Vandichel
Center for Molecular Modeling, Ghent University, Technology Park 903, 9052 Zwijnaarde, Belgium
Department of Physics and Competence Center for Catalysis, Chalmers University of Technology, Fysikgränd 3, Göteborg, Sweden
Search for more papers by this authorDr. Michael Busch
Department of Physics and Competence Center for Catalysis, Chalmers University of Technology, Fysikgränd 3, Göteborg, Sweden
Search for more papers by this authorProf. Kristof Van Hecke
Department of Inorganic and Physical Chemistry, Laboratory of Organometallic Chemistry and Catalysis, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium
Search for more papers by this authorProf. Mekhman Yusubov
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Search for more papers by this authorProf. Shaoxian Song
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Francis Verpoort
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Department of Inorganic and Physical Chemistry, Laboratory of Organometallic Chemistry and Catalysis, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium
Search for more papers by this authorDr. Hussein A. Younus
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 36514 Egypt
Search for more papers by this authorDr. Nazir Ahmad
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Search for more papers by this authorDr. Adeel H. Chughtai
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
Search for more papers by this authorDr. Matthias Vandichel
Center for Molecular Modeling, Ghent University, Technology Park 903, 9052 Zwijnaarde, Belgium
Department of Physics and Competence Center for Catalysis, Chalmers University of Technology, Fysikgränd 3, Göteborg, Sweden
Search for more papers by this authorDr. Michael Busch
Department of Physics and Competence Center for Catalysis, Chalmers University of Technology, Fysikgränd 3, Göteborg, Sweden
Search for more papers by this authorProf. Kristof Van Hecke
Department of Inorganic and Physical Chemistry, Laboratory of Organometallic Chemistry and Catalysis, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium
Search for more papers by this authorProf. Mekhman Yusubov
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Search for more papers by this authorProf. Shaoxian Song
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Francis Verpoort
State Key Laboratory of Advanced Technology for Materials, Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P.R. China
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070 P.R. China
National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 Russia
Department of Inorganic and Physical Chemistry, Laboratory of Organometallic Chemistry and Catalysis, Ghent University, Krijgslaan 281 (S-3), 9000 Ghent, Belgium
Search for more papers by this authorGraphical Abstract
Finding active catalytic species: An in situ generated cobalt catalyst efficiently conducts photo- and electrochemical water oxidation under near-neutral conditions. This work sheds light upon the ability to directly assemble molecular metal–organic catalyst films on the surface of different conducting electrodes for the potential molecular engineering of cobalt-based electrocatalytic films.
Abstract
Water splitting is the key step towards artificial photosystems for solar energy conversion and storage in the form of chemical bonding. The oxidation of water is the bottle-neck of this process that hampers its practical utility; hence, efficient, robust, and easy to make catalytic systems based on cheap and earth-abundant materials are of exceptional importance. Herein, an in situ generated cobalt catalyst, [CoII(TCA)2(H2O)2] (TCA=1-mesityl-1,2,3-1H-triazole-4-carboxylate), that efficiently conducts photochemical water oxidation under near-neutral conditions is presented. The catalyst showed high stability under photolytic conditions for more than 3 h of photoirradiation. During electrochemical water oxidation, the catalytic system assembled a catalyst film, which proved not to be cobalt oxide/hydroxide as normally expected, but instead, and for the first time, generated a molecular cobalt complex that incorporated the organic ligand bound to cobalt ions. The catalyst film exhibited a low overpotential for electrocatalytic water oxidation (360 mV) and high oxygen evolution peak current densities of 9 and 2.7 mA cm−2 on glassy carbon and indium-doped tin oxide electrodes, respectively, at only 1.49 and 1.39 V (versus a normal hydrogen electrode), respectively, under neutral conditions. This finding, exemplified on the in situ generated cobalt complex, might be applicable to other molecular systems and suggests that the formation of a catalytic film in electrochemical water oxidation experiments is not always an indication of catalyst decomposition and the formation of nanoparticles.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201601477-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55–60.
- 2
- 2aM. D. Kärkäs, O. Verho, E. V. Johnston, B. R. Åkermark, Chem. Rev. 2014, 114, 11863–12001;
- 2bJ. D. Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. 2015, 115, 12974–13005.
- 3
- 3aL. Duan, Y. Xu, L. Tong, L. Sun, ChemSusChem 2011, 4, 238–244;
- 3bD. G. Hetterscheid, J. N. Reek, Angew. Chem. Int. Ed. 2012, 51, 9740–9747;
- 3cN. Kaveevivitchai, R. Zong, H.-W. Tseng, R. Chitta, R. P. Thummel, Inorg. Chem. 2012, 51, 2930–2939;
- 3dL. Tong, A. K. Inge, L. Duan, L. Wang, X. Zou, L. Sun, Inorg. Chem. 2013, 52, 2505–2518;
- 3eL. Tong, Y. Wang, L. Duan, Y. Xu, X. Cheng, A. Fischer, M. R. S. Ahlquist, L. Sun, Inorg. Chem. 2012, 51, 3388–3398;
- 3fA. G. Walden, A. J. Miller, Chem. Sci. 2015, 6, 2405–2410;
- 3gC. Wang, Y. Chen, W.-F. Fu, Dalton Trans. 2015, 44, 14483–14493;
- 3hQ. Zeng, F. W. Lewis, L. M. Harwood, F. Hartl, Coord. Chem. Rev. 2015, 304, 88–101; lit i>
- 4
- 4aA. Lewandowska-Andralojc, D. E. Polyansky, C.-H. Wang, W.-H. Wang, Y. Himeda, E. Fujita, Phys. Chem. Chem. Phys. 2014, 16, 11976–11987;
- 4bN. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard, J. Am. Chem. Soc. 2008, 130, 210–217;
- 4cJ. A. Woods, R. Lalrempuia, A. Petronilho, N. D. McDaniel, H. Müller-Bunz, M. Albrecht, S. Bernhard, Energy Environ. Sci. 2014, 7, 2316–2328;
- 4dM. Li, K. Takada, J. I. Goldsmith, S. Bernhard, Inorg. Chem. 2016, 55, 518–526;
- 4eM. Navarro, M. Li, H. Müller-Bunz, S. Bernhard, M. Albrecht, Chem. Eur. J. 2016, 22, 6740–6745.
- 5
- 5aM. A. Asraf, H. A. Younus, C. I. Ezugwua, A. Mehta, Catal. Sci. Technol. 2016, 6, 4271–4282;
- 5bM. A. Asraf, H. A. Younus, M. Yusubov, F. Verpoort, Catal. Sci. Technol. 2015, 5, 4901–4925;
- 5cC. Lu, J. Du, X.-J. Su, M.-T. Zhang, X. Xu, T. J. Meyer, Z. Chen, ACS Catal. 2016, 6, 77–83;
- 5dY. Zhao, J. Lin, Y. Liu, B. Ma, Y. Ding, M. Chen, Chem. Commun. 2015, 51, 17309–17312;
- 5eD. Das, S. Pattanayak, K. K. Singh, B. Garai, S. Sen Gupta, Chem. Commun. 2016, 52, 11787–11790.
- 6
- 6aS. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498–502;
- 6bZ. Chen, T. J. Meyer, Angew. Chem. Int. Ed. 2013, 52, 700–703;
- 6cM.-T. Zhang, Z. Chen, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 2048–2051.
- 7
- 7aW. A. Arafa, M. D. Kärkäs, B.-L. Lee, T. Åkermark, R.-Z. Liao, H.-M. Berends, J. Messinger, P. E. Siegbahn, B. Åkermark, Phys. Chem. Chem. Phys. 2014, 16, 11950–11964;
- 7bE. A. Karlsson, B. L. Lee, R. Z. Liao, T. Åkermark, M. D. Kärkäs, V. S. Becerril, P. E. Siegbahn, X. Zou, M. Abrahamsson, B. Åkermark, ChemPlusChem 2014, 79, 936–950.
- 8
- 8aB. Das, B.-L. Lee, E. A. Karlsson, T. Åkermark, A. Shatskiy, S. Demeshko, R.-Z. Liao, T. M. Laine, M. Haukka, E. Zeglio, A. F. Abdel-Magied, P. E. M. Siegbahn, F. Meyer, M. D. Karkas, E. V. Johnston, E. Nordlander, B. Åkermark, Dalton Trans. 2016, 45, 13289–13293;
- 8bW. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. Soc. 2010, 132, 10990–10991;
- 8cJ. L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J. J. Pla, M. Costas, Nat. Chem. 2011, 3, 807–813;
- 8dB. M. Klepser, B. M. Bartlett, J. Am. Chem. Soc. 2014, 136, 1694–1697;
- 8eB. Das, A. Orthaber, S. Ott, A. Thapper, ChemSusChem 2016, 9, 1178–1186;
- 8fG. Panchbhai, W. M. Singh, B. Das, R. T. Jane, A. Thapper, Eur. J. Inorg. Chem. 2016, 3262–3268;
- 8gC. Panda, J. Debgupta, D. D. Díaz, K. K. Singh, G. S. Sen, B. B. Dhar, J. Am. Chem. Soc. 2014, 136, 12273–12282;
- 8hY. Liu, R. Xiang, X. Du, Y. Ding, B. Ma, Chem. Commun. 2014, 50, 12779–12782.
- 9
- 9aD. Wang, G. Ghirlanda, J. P. Allen, J. Am. Chem. Soc. 2014, 136, 10198–10201;
- 9bL. Wang, L. Duan, R. B. Ambre, Q. Daniel, H. Chen, J. Sun, B. Das, A. Thapper, J. Uhlig, P. Dinér, J. Catal. 2016, 335, 72–78;
- 9cY. Han, Y. Wu, W. Lai, R. Cao, Inorg. Chem. 2015, 54, 5604–5613.
- 10
- 10aJ. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385;
- 10bZ. Zhuang, W. Sheng, Y. Yan, Adv. Mater. 2014, 26, 3950–3955;
- 10cR. D. Smith, M. S. Prévot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel, C. P. Berlinguette, Science 2013, 340, 60–63;
- 10dJ. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grützke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2014, 53, 8508–8512;
- 10eL.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 2015, 8, 2347–2351.
- 11
- 11aM. W. Kanan, D. G. Nocera, Science 2008, 321, 1072–1075;
- 11bD. Wang, J. T. Groves, Proc. Natl. Acad. Sci. USA 2013, 110, 15579–15584;
- 11cP. Du, R. Eisenberg, Energy Environ. Sci. 2012, 5, 6012–6021;
- 11dZ. Chen, T. J. Meyer, Angew. Chem. Int. Ed. 2013, 52, 13708–13711;
- 11eM. Dincă, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2010, 107, 10337–10341;
- 11fA. K. Poulsen, A. Rompel, C. J. McKenzie, Angew. Chem. Int. Ed. 2005, 44, 6916–6920;
- 11gR. K. Hocking, R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461–466;
- 11hE. A. Karlsson, B.-L. Lee, T. Åkermark, E. V. Johnston, M. D. Kärkäs, J. Sun, Ö. Hansson, J.-E. Bäckvall, B. Åkermark, Angew. Chem. Int. Ed. 2011, 50, 11715–11718;
- 11iM. Zhang, M.-T. Zhang, C. Hou, Z.-F. Ke, T.-B. Lu, Angew. Chem. Int. Ed. 2014, 53, 13042–13048;
- 11jM. M. Najafpour, G. Renger, M. Hołyńska, A. N. Moghaddam, E.-M. Aro, R. Carpentier, H. Nishihara, J. J. Eaton-Rye, J.-R. Shen, S. I. Allakhverdiev, Chem. Rev. 2016, 116, 2886–2936;
- 11kS. D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, Angew. Chem. Int. Ed. 2010, 49, 6405;
- 11lM. D. Kärkäs, B. Åkermark, Dalton Trans. 2016, 45, 14421;
- 11mK. S. Joya, Y. F. Joya, H. J. De Groot, Adv. Energy Mater. 2014, 4, 1301929.
- 12
- 12aV. Artero, M. Chavarot-Kerlidou, M. Fontecave, Angew. Chem. Int. Ed. 2011, 50, 7238–7266;
- 12bC.-F. Leung, S.-M. Ng, C.-C. Ko, W.-L. Man, J. Wu, L. Chen, T.-C. Lau, Energy Environ. Sci. 2012, 5, 7903–7907;
- 12cB. M. Hunter, H. B. Gray, A. M. Müller, Chem. Rev. 2016, 116, 14120.
- 13
- 13aJ. J. Stracke, R. G. Finke, ACS Catal. 2014, 4, 909–933;
- 13bJ. J. Stracke, R. G. Finke, J. Am. Chem. Soc. 2011, 133, 14872–14875.
- 14V. Artero, M. Fontecave, Chem. Soc. Rev. 2013, 42, 2338–2356.
- 15
- 15aQ. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342–345;
- 15bH. Y. Wang, E. Mijangos, S. Ott, A. Thapper, Angew. Chem. Int. Ed. 2014, 53, 14499;
- 15cJ.-W. Wang, P. Sahoo, T.-B. Lu, ACS Catal. 2016, 6, 5062–5068.
- 16A. M. Ullman, Y. Liu, M. Huynh, D. K. Bediako, H. Wang, B. L. Anderson, D. C. Powers, J. J. Breen, H. D. Abruña, D. G. Nocera, J. Am. Chem. Soc. 2014, 136, 17681–17688.
- 17
- 17aT. Abe, K. Nagai, S. Kabutomori, M. Kaneko, A. Tajiri, T. Norimatsu, Angew. Chem. Int. Ed. 2006, 45, 2778–2781;
- 17bD. K. Dogutan, R. McGuire, Jr, D. G. Nocera, J. Am. Chem. Soc. 2011, 133, 9178–9180;
- 17cT. Nakazono, A. R. Parent, K. Sakai, Chem. Commun. 2013, 49, 6325–6327;
- 17dE. Pizzolato, M. Natali, B. Posocco, A. M. López, I. Bazzan, M. Di Valentin, P. Galloni, V. Conte, M. Bonchio, F. Scandola, Chem. Commun. 2013, 49, 9941–9943;
- 17eD. J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C. P. Berlinguette, Chem. Commun. 2011, 47, 4249–4251;
- 17fM. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058–3062;
- 17gZ. Huang, Z. Luo, Y. V. Geletii, J. W. Vickers, Q. Yin, D. Wu, Y. Hou, Y. Ding, J. Song, D. G. Musaev, C. L. Hill, T. Lian, J. Am. Chem. Soc. 2011, 133, 2068–2071;
- 17hH. Lv, J. Song, Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kögerler, P. F. Zhuk, J. Bacsa, G. Zhu, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 9268–9271;
- 17iY. V. Geletii, B. Botar, P. Kögerler, D. A. Hillesheim, D. G. Musaev, C. L. Hill, Angew. Chem. Int. Ed. 2008, 47, 3896–3899;
- 17jM. Chen, S.-M. Ng, S.-M. Yiu, K.-C. Lau, R. J. Zeng, T.-C. Lau, Chem. Commun. 2014, 50, 14956–14959.
- 18
- 18aL. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418–423;
- 18bL. Duan, L. Wang, F. Li, F. Li, L. Sun, Acc. Chem. Res. 2015, 48, 2084–2096.
- 19
- 19aL. Tong, M. Gothelid, L. Sun, Chem. Commun. 2012, 48, 10025–10027;
- 19bY. Chen, H. Chen, H. Tian, Chem. Commun. 2015, 51, 11508–11511.
- 20S. Dey, B. Mondal, A. Dey, Phys. Chem. Chem. Phys. 2014, 16, 12221–12227.
- 21A. Han, H. Wu, Z. Sun, H. Jia, Z. Yan, H. Ma, X. Liu, P. Du, ACS Appl. Mater. Interfaces 2014, 6, 10929–10934.
- 22K. S. Joya, K. Takanabe, H. J. De Groot, Adv. Energy Mater. 2014, 4, 1400252.
- 23D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7606–7616.
- 24T. Zhang, C. Wang, S. Liu, J.-L. Wang, W. Lin, J. Am. Chem. Soc. 2014, 136, 273–281.
- 25K. S. Joya, N. K. Subbaiyan, F. D'Souza, H. J. de Groot, Angew. Chem. Int. Ed. 2012, 51, 9601–9605;
- 26B. S. Yeo, A. T. Bell, J. Am. Chem. Soc. 2011, 133, 5587–5593.
- 27D. Ressnig, M. Shalom, J. Patscheider, R. Moré, F. Evangelisti, M. Antonietti, G. R. Patzke, J. Mater. Chem. A 2015, 3, 5072–5082.
- 28J-W Wang, P. Sahoo, T-B Lu, ACS Catal. 2016, 6, 5062–5068.
- 29J. J. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, Jr, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists, Springer, Berlin, 2012.
- 30
- 30aN. S. McIntyre, M. G. Cook, Anal. Chem. 1975, 47, 2208–2213;
- 30bC. A. Kent, J. J. Concepcion, C. J. Dares, D. A. Torelli, A. J. Rieth, A. S. Miller, P. G. Hoertz, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 8432–8435;
- 30cF. Song, Y. Ding, B. Ma, C. Wang, Q. Wang, X. Du, S. Fu, J. Song, Energy Environ. Sci. 2013, 6, 1170–1184;
- 30dJ. Matthew, Surf. Interface Anal. 2004, 36, 1647–1647.
- 31
- 31aS. D. Techane, L. J. Gamble, D. G. Castner, J. Phys. Chem. C 2011, 115, 9432–9441;
- 31bN. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, V. P. Dravid, Nano Lett. 2004, 4, 383–386.
- 32S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A 2008, 281, 49–58.
- 33S. Ciampi, T. Böcking, K. A. Kilian, M. James, J. B. Harper, J. J. Gooding, Langmuir 2007, 23, 9320–9329.
- 34R. L. Arechederra, K. Artyushkova, P. Atanassov, S. D. Minteer, ACS Appl. Mater. Interfaces 2010, 2, 3295–3302.
- 35P. Garrido-Barros, I. Funes-Ardoiz, S. Drouet, J. Bene tBuchholz, F. Maseras, A. Llobet, J. Am. Chem. Soc. 2015, 137, 6758–6761.
- 36 CRC Handbook of Chemistry and Physics, Vol. 85 (Ed.: ), CRC Press, Boca Raton, FL, 2004.
- 37
- 37aJ. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Norskov, J. Electroanal. Chem. 2007, 607, 83–89;
- 37bJ. Rossmeisl, A. Logadottir, J. K. Norskov, Chem. Phys. 2005, 319, 178–184.
- 38
- 38aJ. O. Bockris, T. Otagawa, J. Phys. Chem-Us 1983, 87, 2960–2971;
- 38bM. Busch, E. Ahlberg, I. Panas, Phys. Chem. Chem. Phys. 2011, 13, 15069–15076.
- 39I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159–1165.
- 40R. Frydendal, M. Busch, N. B. Halck, E. A. Paoli, P. Krtil, I. Chorkendorff, J. Rossmeisl, ChemCatChem 2015, 7, 149–154.
- 41
- 41aN. B. Halck, V. Petrykin, P. Krtil, J. Rossmeisl, Phys. Chem. Chem. Phys. 2014, 16, 13682–13688;
- 41bM. Busch, N. B. Halck, U. I. Kramm, S. Siahrostami, P. Krtil, J. Rossmeisl, Nano Energy 2016, 29, 126–135.
- 42J. M. de Ruiter, R. L. Purchase, A. Monti, C. J. M. van der Ham, M. P. Gullo, K. S. Joya, M. D'Angelantonio, A. Barbieri, D. G. H. Hetterscheid, H. J. M. de Groot, F. Buda, ACS Catal. 2016, 6, 7340–7349.
- 43
- 43aM. D. Wodrich, M. Busch, C. Corminboeuf, Chem. Sci. 2016, 7, 5723–5735;
- 43bM. Busch, M. D. Wodrich, C. Corminboeuf, Chem. Sci. 2015, 6, 6754–6761;
- 43cR. Parsons, Trans. Faraday Soc. 1958, 54, 1053–1063;
- 43dJ. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37–46;
- 43eH. Gerischer, Bull. Soc. Chim. Belg. 1958, 67, 506–527.
- 44P. La Sabatier, Catalyse en Chimie Organique, Librarie Polytechnique, Paris, 1993.
- 45M. Lehtimäki, H. Hoffmannová, O. Boytsova, Z. Bastl, M. Busch, N. B. Halck, J. Rossmeisl, P. Krtil, Electrochim. Acta 2016, 191, 452–461.
- 46M. Bajdich, M. Garcia-Mota, A. Vojvodic, J. K. Norskov, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 13521–13530.
- 47O. Diaz-Morales, I. Ledezma-Yanez, M. T. M. Koper, F. Calle-Vallejo, ACS Catal. 2015, 5, 5380–5387.
- 48S. Chu, E. Coccia, M. Barborini, L. Guidoni, J. Chem. Theory Comput. 2016, 12, 5803.
- 49F. H. Hodel, S. Luber, ACS Catal. 2016, 6, 1505–1517.
- 50F. Acuña-Parés, Z. Codolà, M. Costas, J. M. Luis, J. Lloret-Fillol, Chem. Eur. J. 2014, 20, 5696–5707.
- 51D. E. Polyansky, J. T. Muckerman, J. Rochford, R. F. Zong, R. P. Thummel, E. Fujita, J. Am. Chem. Soc. 2011, 133, 14649–14665.
- 52X. J. Su, M. Gao, L. Jiao, R. Z. Liao, P. E. M. Siegbahn, J. P. Cheng, M. T. Zhang, Angew. Chem. Int. Ed. 2015, 54, 4909–4914;
- 53
- 53aF. Calle-Vallejo, J. I. Martinez, J. M. Garcia-Lastra, E. Abad, M. T. M. Koper, Surf. Sci. 2013, 607, 47–53;
- 53bM. T. M. Koper, J. Electroanal. Chem. 2011, 660, 254–260.
- 54C. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 2009, 11, 10757–10816.
- 55S. Trasatti, Electrochim. Acta 2000, 45, 2377–2385.
- 56D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Norskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305–1313.