Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal–Organic Frameworks
Nicolas Chanut
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorCorresponding Author
Dr. Sandrine Bourrelly
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorProf. Bogdan Kuchta
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorDr. Christian Serre
Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000, PSL Research University, 75005 Paris, France
Institut Lavoisier de Versailles, UMR 8180 CNRS – Université de Versailles St. Quentin, 45 avenue des États-Unis, 78035 Versailles cedex, France
Search for more papers by this authorDr. Jong-San Chang
Departement of Chemistry, Sungkyunkwan University, Suwon, 440-476 Korea
Research Center for Nanocatalysts, Korea, Research Institute of Chemical Technology (KRICT), Daejeon, 305-600 Korea
Search for more papers by this authorProf. Paul A. Wright
Univ St Andrews, Eastchem Sch Chem, Purdie Bldg, St Andrews, KY169ST Fife, Scotland
Search for more papers by this authorCorresponding Author
Dr. Philip L. Llewellyn
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorNicolas Chanut
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorCorresponding Author
Dr. Sandrine Bourrelly
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorProf. Bogdan Kuchta
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorDr. Christian Serre
Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000, PSL Research University, 75005 Paris, France
Institut Lavoisier de Versailles, UMR 8180 CNRS – Université de Versailles St. Quentin, 45 avenue des États-Unis, 78035 Versailles cedex, France
Search for more papers by this authorDr. Jong-San Chang
Departement of Chemistry, Sungkyunkwan University, Suwon, 440-476 Korea
Research Center for Nanocatalysts, Korea, Research Institute of Chemical Technology (KRICT), Daejeon, 305-600 Korea
Search for more papers by this authorProf. Paul A. Wright
Univ St Andrews, Eastchem Sch Chem, Purdie Bldg, St Andrews, KY169ST Fife, Scotland
Search for more papers by this authorCorresponding Author
Dr. Philip L. Llewellyn
Aix-Marseille University, CNRS, MADIREL (UMR 7246), Centre de St Jérôme, 13013 Marseille, France
Search for more papers by this authorGraphical Abstract
Capturing MOFs: A simple screening strategy is proposed to follow the CO2 adsorption behaviour of 45 metal– organic frameworks (MOFs) that are pre-equilibrated with varying amounts of H2O. Different behaviours are observed and discussed, ranging from large decreases in CO2 uptake with degree of wetting to a negligible influence of water. Materials showing promising CO2 uptake are highlighted as of interest for further studies.
Abstract
A simple laboratory-scale protocol that enables the evaluation of the effect of adsorbed water on CO2 uptake is proposed. 45 metal–organic frameworks (MOFs) were compared against reference zeolites and active carbons. It is possible to classify materials with different trends in CO2 uptake with varying amounts of pre-adsorbed water, including cases in which an increase in CO2 uptake is observed for samples with a given amount of pre-adsorbed water. Comparing loss in CO2 uptake between “wet” and “dry” samples with the Henry constant calculated from the water adsorption isotherm results in a semi-logarithmic trend for the majority of samples allowing predictions to be made. Outliers from this trend may be of particular interest and an explanation for the behaviour for each of the outliers is proposed. This thus leads to propositions for designing or choosing MOFs for CO2 capture in applications where humidity is present.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201601816-sup-0001-misc_information.pdf5.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. M. Ribeiro, T. P. Sauer, C. A. Grande, R. F. P. M. Moreira, J. M. Loureiro, A. E. Rodrigues, Ind. Eng. Chem. Res. 2008, 47, 7019–7026.
- 2P. Kanchanalai, R. P. Lively, M. J. Realff, Y. Kawajiri, Ind. Eng. Chem. Res. 2013, 52, 11132–11141.
- 3D. Ferreira, R. Magalhães, P. Taveira, A. Mendes, Ind. Eng. Chem. Res. 2011, 50, 10201–10210.
- 4D. Bahamon, L. F. Vega, Chem. Eng. J. 2016, 284, 438–447.
- 5D. M. D′Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058–6082; Angew. Chem. 2010, 122, 6194–6219.
- 6F. Brandani, D. M. Ruthven, Ind. Eng. Chem. Res. 2004, 43, 8339–8344.
- 7G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh, M. Marshall, Adsorption 2008, 14, 415–422.
- 8G. Férey, Chem. Soc. Rev. 2008, 37, 191–214.
- 9S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430.
- 10O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714.
- 11R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 2009, 253, 3042–3066.
- 12J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
- 13D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502–7513;
Angew. Chem. 2009, 121, 7638–7649.
10.1002/ange.200806063 Google Scholar
- 14A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606–4655.
- 15P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, et al., Nat. Mater. 2010, 9, 172–178.
- 16J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
- 17R. E. Morris, P. S. Wheatley, Angew. Chem. Int. Ed. 2008, 47, 4966–4981;
Angew. Chem. 2008, 120, 5044–5059.
10.1002/ange.200703934 Google Scholar
- 18G. Férey, C. Serre, T. Devic, G. Maurin, H. Jobic, P. L. Llewellyn, G. De Weireld, A. Vimont, M. Daturi, J.-S. Chang, Chem. Soc. Rev. 2011, 40, 550–562.
- 19L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294.
- 20J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, et al., Nature 2015, 527, 357–361.
- 21N. C. Burtch, H. Jasuja, K. S. Walton, Chem. Rev. 2014, 114, 10575–10612.
- 22J. Canivet, A. Fateeva, Y. Guo, B. Coasne, D. Farrusseng, Chem. Soc. Rev. 2014, 43, 5594–5617.
- 23J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem, R. R. Willis, J. Am. Chem. Soc. 2009, 131, 15834–15842.
- 24P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle, S. Kaskel, Microporous Mesoporous Mater. 2009, 120, 325–330.
- 25P. M. Schoenecker, C. G. Carson, H. Jasuja, C. J. J. Flemming, K. S. Walton, Ind. Eng. Chem. Res. 2012, 51, 6513–6519.
- 26I. J. Kang, N. A. Khan, E. Haque, S. H. Jhung, Chem. Eur. J. 2011, 17, 6437–6442.
- 27J. Liu, A. I. Benin, A. M. B. Furtado, P. Jakubczak, R. R. Willis, M. D. LeVan, Langmuir 2011, 27, 11451–11456.
- 28M. De Toni, R. Jonchiere, P. Pullumbi, F.-X. Coudert, A. H. Fuchs, ChemPhysChem 2012, 13, 3497–3503.
- 29V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, et al., Angew. Chem. Int. Ed. 2012, 51, 9267–9271; Angew. Chem. 2012, 124, 9401–9405.
- 30K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781.
- 31S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science, 1999, 283, 1148–1150.
- 32A. Ö. Yazaydın, A. I. Benin, S. A. Faheem, P. Jakubczak, J. J. Low, R. R. Willis, R. Q. Snurr, Chem. Mater. 2009, 21, 1425–1430.
- 33J. Liu, Y. Wang, A. I. Benin, P. Jakubczak, R. R. Willis, M. D. LeVan, Langmuir 2010, 26, 14301–14307.
- 34J. M. Castillo, T. J. H. Vlugt, S. Calero, J. Phys. Chem. C 2008, 112, 15934–15939.
- 35E. Soubeyrand-Lenoir, C. Vagner, J. W. Yoon, P. Bazin, F. Ragon, Y. K. Hwang, C. Serre, J.-S. Chang, P. L. Llewellyn, J. Am. Chem. Soc. 2012, 134, 10174–10181.
- 36F. Gul-E-Noor, B. Jee, A. Pöppl, M. Hartmann, D. Himsl, M. Bertmer, Phys. Chem. Chem. Phys. 2011, 13, 7783.
- 37A. C. Kizzie, A. G. Wong-Foy, A. J. Matzger, Langmuir 2011, 27, 6368–6373.
- 38J. Liu, J. Tian, P. K. Thallapally, B. P. McGrail, J. Phys. Chem. C 2012, 116, 9575–9581.
- 39G. D. Pirngruber, L. Hamon, S. Bourrelly, P. L. Llewellyn, E. Lenoir, V. Guillerm, C. Serre, T. Devic, ChemSusChem 2012, 5, 762–776.
- 40H. Huang, W. Zhang, D. Liu, C. Zhong, Ind. Eng. Chem. Res. 2012, 51, 10031–10038.
- 41R. Babarao, M. Eddaoudi, J. W. Jiang, Langmuir 2010, 26, 11196–11203.
- 42Z. Zhang, Z. Li, J. Li, Langmuir 2012, 28, 12122–12133.
- 43R. Babarao, S. Dai, D. Jiang, Langmuir 2011, 27, 3451–3460.
- 44L. Hamon, P. L. Llewellyn, T. Devic, A. Ghoufi, G. Clet, V. Guillerm, G. D. Pirngruber, G. Maurin, C. Serre, G. Driver, et al., J. Am. Chem. Soc. 2009, 131, 17490–17499.
- 45E. Stavitski, E. A. Pidko, S. Couck, T. Remy, E. J. M. Hensen, B. M. Weckhuysen, J. Denayer, J. Gascon, F. Kapteijn, Langmuir 2011, 27, 3970–3976.
- 46B. Liu, B. Smit, J. Phys. Chem. C 2010, 114, 8515–8522.
- 47S. J. Datta, C. Khumnoon, Z. H. Lee, W. K. Moon, S. Docao, T. H. Nguyen, I. C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, et al., Science 2015, 350, 302–306.
- 48P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, et al., Nature 2013, 495, 80–84.
- 49Y. Chen, J. Jiang, ChemSusChem 2010, 3, 982–988.
- 50Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, Y. He, Sci. Rep. 2013, 3, 2916.
- 51Y. F. Chen, R. Babarao, S. I. Sandler, J. W. Jiang, Langmuir 2010, 26, 8743–8750.
- 52J. Jiang, AIChE J. 2009, 55, 2422–2432.
- 53J. A. Mason, T. M. McDonald, T.-H. Bae, J. E. Bachman, K. Sumida, J. J. Dutton, S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2015, 137, 4787–4803.
- 54P. L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk, G. Férey, Angew. Chem. 2006, 118, 7915–7918.
10.1002/ange.200602278 Google Scholar
- 55T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 2004, 10, 1373–1382.
- 56F. Millange, N. Guillou, R. I. Walton, J.-M. Grenèche, I. Margiolaki, G. Férey, Chem. Commun. 2008, 4732.
- 57Vincent Guillerm, Synthèse, fonctionnalisation et propriétés d'adsorption de nouveaux solides hybrides poreux, PhDThesis, Université de Versailles, 2011.
- 58T. Devic, F. Salles, S. Bourrelly, B. Moulin, G. Maurin, P. Horcajada, C. Serre, A. Vimont, J.-C. Lavalley, H. Leclerc, et al., J. Mater. Chem. 2012, 22, 10266.
- 59S. Couck, J. F. M. Denayer, G. V. Baron, T. Rémy, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2009, 131, 6326–6327.
- 60A. D. Wiersum, E. Soubeyrand-Lenoir, Q. Yang, B. Moulin, V. Guillerm, M. B. Yahia, S. Bourrelly, A. Vimont, S. Miller, C. Vagner, et al., Chem. Asian J. 2011, 6, 3270–3280.