Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide
Correction(s) for this article
-
Corrigendum: Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide
- Pascal M. Schäfer,
- Martin Fuchs,
- Andreas Ohligschläger,
- Ruth Rittinghaus,
- Paul McKeown,
- Enver Akin,
- Maximilian Schmidt,
- Alexander Hoffmann,
- Marcel A. Liauw,
- Matthew D. Jones,
- Sonja Herres-Pawlis,
- Volume 10Issue 23ChemSusChem
- pages: 4799-4799
- First Published online: November 14, 2017
Pascal M. Schäfer
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorMartin Fuchs
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorAndreas Ohligschläger
Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
Search for more papers by this authorRuth Rittinghaus
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorDr. Paul McKeown
Department of Chemistry, University of Bath, ClavertonDown, Bath, BA2 7AY UK
Search for more papers by this authorDr. Enver Akin
Fakultät für Naturwissenschaften, Department Chemie, Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
Search for more papers by this authorMaximilian Schmidt
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorDr. Alexander Hoffmann
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorProf. Dr. Marcel A. Liauw
Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
Search for more papers by this authorDr. Matthew D. Jones
Department of Chemistry, University of Bath, ClavertonDown, Bath, BA2 7AY UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Sonja Herres-Pawlis
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorPascal M. Schäfer
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorMartin Fuchs
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorAndreas Ohligschläger
Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
Search for more papers by this authorRuth Rittinghaus
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorDr. Paul McKeown
Department of Chemistry, University of Bath, ClavertonDown, Bath, BA2 7AY UK
Search for more papers by this authorDr. Enver Akin
Fakultät für Naturwissenschaften, Department Chemie, Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
Search for more papers by this authorMaximilian Schmidt
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorDr. Alexander Hoffmann
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorProf. Dr. Marcel A. Liauw
Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
Search for more papers by this authorDr. Matthew D. Jones
Department of Chemistry, University of Bath, ClavertonDown, Bath, BA2 7AY UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Sonja Herres-Pawlis
Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorGraphical Abstract
Fast and robust! Four fast robust ring-opening polymerization (ROP) catalysts polymerize lactide in high yields and good molar masses with potential for industrial application. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date. End-group analysis was performed to clarify the mechanism.
Abstract
New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl2(DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (Mw=69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant kp. Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201701237-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354–362;
- 1bR. Auras, B. Harte, S. Selke, Macromol. Biosci. 2004, 4, 835–864;
- 1cK. Hamad, M. Kaseem, H. W. Yang, F. Deri, Y. G. Ko, eXPRESS Polym. Lett. 2015, 9, 435–455.
- 2E. Chiellini, R. Solaro, Adv. Mater. 1996, 8, 305–313.
- 3
- 3aT. Mekonnen, P. Mussone, H. Khalil, D. Bressler, J. Mater. Chem. A 2013, 1, 13379–13398;
- 3bT. Hayashi, Prog. Polym. Sci. 1994, 19, 663–702;
- 3cB. J. O′Keefe, M. A. Hillmyer, W. B. Tolman, J. Chem. Soc. Dalton Trans. 2001, 2215–2224;
- 3dD. Garlotta, J. Polym. Environ. 2001, 9, 63–84;
- 3eR. H. Platel, L. M. Hodgson, C. K. Williams, Polym. Rev. 2008, 48, 11–63.
- 4
- 4aR. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater. 2000, 12, 1841–1846;
- 4bP. Dubois, O. Coulembier, J.-M. Raquez, Handbook of Ring-opening polymerization, Wiley-VCH, Weinheim, 2009.
10.1002/9783527628407 Google Scholar
- 5M. J. Stanford, A. P. Dove, Chem. Soc. Rev. 2010, 39, 486–494.
- 6
- 6aY. Sarazin, J.-F. Carpentier, Chem. Rev. 2015, 115, 3564–3614;
- 6bT. Rosen, I. Goldberg, V. Venditto, M. Kol, J. Am. Chem. Soc. 2016, 138, 12041–12044;
- 6cC. J. Chuck, M. G. Davidson, G. Gobius du Sart, P. K. Ivanova-Mitseva, G. I. Kociok-Köhn, L. B. Manton, Inorg. Chem. 2013, 52, 10804–10811.
- 7
- 7aC. K. Williams, L. E. Breyfogle, S. K. Choi, W. Nam, V. G. Young, M. A. Hillmyer, W. B. Tolman, J. Am. Chem. Soc. 2003, 125, 11350–11359;
- 7bA. J. Chmura, M. G. Davidson, C. J. Frankis, M. D. Jones, M. D. Lunn, Chem. Commun. 2008, 1293–1295;
- 7cA. J. Chmura, M. G. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon, A. F. Johnson, P. Khunkamchoo, S. L. Roberts, S. S. F. Wong, Macromolecules 2006, 39, 7250–7257;
- 7dT. R. Forder, M. F. Mahon, M. G. Davidson, T. Woodman, M. D. Jones, Dalton Trans. 2014, 43, 12095–12099;
- 7eL. Clark, G. B. Deacon, C. M. Forsyth, P. C. Junk, P. Mountford, J. P. Townley, J. Wang, Dalton Trans. 2013, 42, 9294–9312.
- 8
- 8aM. D. Jones, L. Brady, P. McKeown, A. Buchard, P. M. Schäfer, L. H. Thomas, M. F. Mahon, T. J. Woodman, J. P. Lowe, Chem. Sci. 2015, 6, 5034–5039;
- 8bM. D. Jones, S. L. Hancock, P. McKeown, P. M. Schäfer, A. Buchard, L. H. Thomas, M. F. Mahon, J. P. Lowe, Chem. Commun. 2014, 50, 15967–15970.
- 9
- 9aE. L. Whitelaw, M. D. Jones, M. F. Mahon, Inorg. Chem. 2010, 49, 7176–7181;
- 9bP. McKeown, M. G. Davidson, G. Kociok-Kohn, M. D. Jones, Chem. Commun. 2016, 52, 10431–10434;
- 9cP. McKeown, J. Brown-Humes, M. G. Davidson, M. F. Mahon, T. J. Woodman, M. D. Jones, Dalton Trans. 2017, 46, 5048–5057.
- 10C. Romain, M. S. Bennington, A. J. P. White, C. K. Williams, S. Brooker, Inorg. Chem. 2015, 54, 11842–11851.
- 11
- 11aA. P. Dove, V. C. Gibson, E. L. Marshall, H. S. Rzepa, A. J. P. White, D. J. Williams, J. Am. Chem. Soc. 2006, 128, 9834–9843;
- 11bC. Scheiper, D. Dittrich, C. Wölper, D. Bläser, J. Roll, S. Schulz, Eur. J. Inorg. Chem. 2014, 2230–2240;
- 11cC. Scheiper, S. Schulz, C. Wölper, D. Bläser, J. Roll, Z. Anorg. Allg. Chem. 2013, 639, 1153–1159;
- 11dC. Scheiper, C. Wölper, D. Bläser, J. Roll, S. Schulz, Z. Naturforsch. 2014, 69b, 1365 -1374.
10.5560/znb.2014-4133 Google Scholar
- 12B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, 123, 3229–3238.
- 13
- 13aH. Ma, T. P. Spaniol, J. Okuda, Angew. Chem. Int. Ed. 2006, 45, 7818–7821;
Angew. Chem. 2006, 118, 7982–7985;
10.1002/ange.200603178 Google Scholar
- 13bH. Ma, T. P. Spaniol, J. Okuda, Inorg. Chem. 2008, 47, 3328–3339;
- 13cA. Sauer, A. Kapelski, C. Fliedel, S. Dagorne, M. Kol, J. Okuda, Dalton Trans. 2013, 42, 9007–9023.
- 14M. H. Chisholm, N. W. Eilerts, J. C. Huffman, S. S. Iyer, M. Pacold, K. Phomphrai, J. Am. Chem. Soc. 2000, 122, 11845–11854.
- 15T. M. Ovitt, G. W. Coates, J. Polym. Sci. Part A 2000, 38, 4686–4692.
- 16A. Thevenon, C. Romain, M. S. Bennington, A. J. P. White, H. J. Davidson, S. Brooker, C. K. Williams, Angew. Chem. Int. Ed. 2016, 55, 8680–8685;
Angew. Chem. 2016, 128, 8822–8827.
10.1002/ange.201602930 Google Scholar
- 17
- 17aA. J. Nijenhuis, D. W. Grijpma, A. J. Pennings, Macromolecules 1992, 25, 6419–6424;
- 17bJ. W. Leenslag, A. J. Pennings, Makromol. Chem. 1987, 188, 1809–1814;
- 17cP. Degée, P. Dubois, R. Jérôme, S. Jacobsen, H.-G. Fritz, Macromol. Symp. 1999, 144, 289–302.
- 18A. Stjerndahl, A. Finne-Wistrand, A.-C. Albertsson, C. M. Bäckesjö, U. Lindgren, J. Biomed. Mater. Res. Part A 2008, 87, 1086–1091.
- 19H. R. Kricheldorf, Chemosphere 2001, 43, 49–54.
- 20Z. Zhong, P. J. Dijkstra, J. Feijen, Angew. Chem. Int. Ed. 2002, 41, 4510–4513;
10.1002/1521-3773(20021202)41:23<4510::AID-ANIE4510>3.0.CO;2-L CASPubMedWeb of Science®Google ScholarAngew. Chem. 2002, 114, 4692–4695.10.1002/1521-3757(20021202)114:23<4692::AID-ANGE4692>3.0.CO;2-5 Google Scholar
- 21
- 21aS. Inkinen, M. Hakkarainen, A.-C. Albertsson, A. Södergård, Biomacromolecules 2011, 12, 523–532;
- 21bO. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 2004, 104, 6147–6176.
- 22
- 22aH. Sun, J. S. Ritch, P. G. Hayes, Inorg. Chem. 2011, 50, 8063–8072;
- 22bC. A. Wheaton, P. G. Hayes, Dalton Trans. 2010, 39, 3861–3869;
- 22cC. A. Wheaton, P. G. Hayes, Chem. Commun. 2010, 46, 8404–8406.
- 23
- 23aS. Nayab, H. Lee, J. H. Jeong, Polyhedron 2011, 30, 405–409;
- 23bK. S. Kwon, S. Nayab, H.-I. Lee, J. H. Jeong, Polyhedron 2017, 126, 127–133;
- 23cK. S. Kwon, S. Nayab, J. H. Jeong, Polyhedron 2015, 85, 615–620.
- 24T. R. Jensen, L. E. Breyfogle, M. A. Hillmyer, W. B. Tolman, Chem. Commun. 2004, 2504–2505.
- 25I. dos Santos Vieira, S. Herres-Pawlis, Eur. J. Inorg. Chem. 2012, 765–774.
- 26
- 26aS. Herres-Pawlis, A. Neuba, O. Seewald, T. Seshadri, H. Egold, U. Flörke, G. Henkel, Eur. J. Org. Chem. 2005, 4879–4890;
- 26bS. Wiesner, P. Walter, A. Wagner, E. Kaifer, H.-J. Himmel, Eur. J. Org. Chem. 2016, 5045–5054;
- 26cC. Krämer, S. Leingang, O. Hubner, E. Kaifer, H. Wadepohl, H.-J. Himmel, Dalton Trans. 2016, 45, 16966–16983;
- 26dB. Eberle, O. Hübner, A. Ziesak, E. Kaifer, H.-J. Himmel, Chem. Eur. J. 2015, 21, 8578–8590;
- 26eI. S. R. Karmel, M. Botoshansky, M. Tamm, M. S. Eisen, Inorg. Chem. 2014, 53, 694–696;
- 26fW. Apisuk, A. G. Trambitas, B. Kitiyanan, M. Tamm, K. Nomura, J. Polym. Sci. Part A 2013, 51, 2575–2580;
- 26gB. Haberlag, X. Wu, K. Brandhorst, J. Grunenberg, C. G. Daniliuc, P. G. Jones, M. Tamm, Chem. Eur. J. 2010, 16, 8868–8877.
- 27
- 27aT. Rösener, O. Bienemann, K. Sigl, N. Schopp, F. Schnitter, U. Flörke, A. Hoffmann, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. Eur. J. 2016, 22, 13550–13562;
- 27bA. Hoffmann, O. Bienemann, I. Vieira, S. Herres-Pawlis, Polymers 2014, 6, 995–1007;
- 27cO. Bienemann, A.-K. Froin, I. dos Santos Vieira, R. Wortmann, A. Hoffmann, S. Herres-Pawlis, Z. Anorg. Allg. Chem. 2012, 638, 1683–1690.
- 28S. Herres-Pawlis, P. Verma, R. Haase, P. Kang, C. T. Lyons, E. C. Wasinger, U. Flörke, G. Henkel, T. D. P. Stack, J. Am. Chem. Soc. 2009, 131, 1154–1169.
- 29
- 29aA. Hoffmann, S. Binder, A. Jesser, R. Haase, U. Flörke, M. Gnida, M. Salomone Stagni, W. Meyer-Klaucke, B. Lebsanft, L. E. Grünig, S. Schneider, M. Hashemi, A. Goos, A. Wetzel, M. Rübhausen, S. Herres-Pawlis, Angew. Chem. Int. Ed. 2014, 53, 299–304;
Angew. Chem. 2014, 126, 305–310;
10.1002/ange.201306061 Google Scholar
- 29bA. Hoffmann, J. Stanek, B. Dicke, L. Peters, B. Grimm-Lebsanft, A. Wetzel, A. Jesser, M. Bauer, M. Gnida, W. Meyer-Klaucke, M. Rübhausen, S. Herres-Pawlis, Eur. J. Inorg. Chem. 2016, 4731–4743;
- 29cJ. Stanek, T. Rösener, A. Metz, J. Mannsperger, A. Hoffmann, S. Herres-Pawlis in Topics in Heterocyclic Chemistry, Springer, Heidelberg, 2015, pp. 1–70.
- 30A. Metz, R. Plothe, B. Glowacki, A. Koszalkowski, M. Scheckenbach, A. Beringer, T. Rösener, J. Michaelis de Vasconcellos, R. Haase, U. Flörke, A. Hoffmann, S. Herres-Pawlis, Eur. J. Inorg. Chem. 2016, 4974–4987.
- 31
- 31aJ. Börner, U. Flörke, K. Huber, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. Eur. J. 2009, 15, 2362–2376;
- 31bJ. Börner, I. dos Santos Vieira, A. Pawlis, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. Eur. J. 2011, 17, 4507–4512.
- 32J. Börner, S. Herres-Pawlis, U. Flörke, K. Huber, Eur. J. Inorg. Chem. 2007, 5645–5651.
- 33
- 33aE. Akin, Dissertation, Universität Paderborn, 2010;
- 33bS. Herres-Pawlis, U. Flörke, G. Henkel, Eur. J. Inorg. Chem. 2005, 3815–3824;
- 33cW. Kantlehner, E. Haug, W. W. Mergen, P. Speh, T. Maier, J. J. Kapassakalidis, H.-J. Bräuner, H. Hagen, Liebigs Ann. Chem. 1984, 108–126.
- 34
- 34aH. Eilingsfeld, M. Seefelder, H. Weidinger, Angew. Chem. 1960, 72, 836–845;
- 34bH. Eilingsfeld, G. Neubauer, M. Seefelder, H. Weidinger, Chem. Ber. 1964, 97, 1232–1245.
- 35L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955–964.
- 36V. Raab, K. Harms, J. Sundermeyer, B. Kovačević, Z. B. Maksić, J. Org. Chem. 2003, 68, 8790–8797.
- 37S. Hardy, I. M. de Wispelaere, W. Leitner, M. A. Liauw, Analyst 2013, 138, 819–824.
- 38M. D. Jones, M. G. Davidson, C. G. Keir, L. M. Hughes, M. F. Mahon, D. C. Apperley, Eur. J. Inorg. Chem. 2009, 635–642.
- 39A. J. Niestroj, M. E. Maier, Praxis in der Organischen Chemie, VCH Verlagsgesellschaft, Weinheim, 1996.
- 40Bruker, AXS Inc., SAINT and SADABS, Madison, Wisconsin, USA, 2008.
- 41Bruker, XPREP, Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- 42G. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467–473.
10.1107/S0108767390000277 Google Scholar
- 43C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281–1284.
- 44Corbion, Purasorb D and Purasorb L, Rev. No. 6, March, 2015 http://www.corbion.com/static/downloads/datasheets/20d/PURASORB%20DL.pdf.
- 45Owing to natural fluctuations during the measurements in the melt-polymerization, the conversion for C4 after 90 min was 55 %, which was higher than for C1–C3. However, the slope of the line of the best fit led to a smaller kapp value.
- 46Owing to the high fluorescence of the guanidines and the corresponding complexes in the range of 420–454 nm (excitation=350 nm) MALDI-TOF analysis (wavelength of the laser: 355 nm) was not useful to determine the guanidine at the chain end (see Figure S9). Because the wavelength of the laser almost corresponds to the excitation wavelength, the guanidine was separated from the polymer chain during the measurement.