Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries
Hailong Lyu
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 P. R. China
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorPeipei Li
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorCorresponding Author
Prof. Jiurong Liu
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 P. R. China
Search for more papers by this authorDr. Shannon Mahurin
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorDr. Jihua Chen
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorDr. Dale K. Hensley
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorDr. Gabriel M. Veith
Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorCorresponding Author
Dr. Zhanhu Guo
Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996 USA
Search for more papers by this authorDr. Sheng Dai
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Department of Chemistry, University of Tennessee, Knoxville, TN, 37996 USA
Search for more papers by this authorCorresponding Author
Dr. Xiao-Guang Sun
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorHailong Lyu
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 P. R. China
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorPeipei Li
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorCorresponding Author
Prof. Jiurong Liu
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061 P. R. China
Search for more papers by this authorDr. Shannon Mahurin
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorDr. Jihua Chen
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorDr. Dale K. Hensley
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorDr. Gabriel M. Veith
Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorCorresponding Author
Dr. Zhanhu Guo
Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996 USA
Search for more papers by this authorDr. Sheng Dai
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Department of Chemistry, University of Tennessee, Knoxville, TN, 37996 USA
Search for more papers by this authorCorresponding Author
Dr. Xiao-Guang Sun
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
Search for more papers by this authorGraphical Abstract
Polyimide and graphene composites: A composite organic cathode based on aromatic polyimide and highly conductive graphene enables not only a high reversible capacity at a charge–discharge rate of C/10 but also an exceptional high-rate cycling stability, that is, a high capacity is achieved at a very high rate of 50C with a capacity retention of 80 % after 1000 cycles.
Abstract
A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g−1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g−1 at a very high charge–discharge rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. The graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201702001-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J.-M. Tarascon, M. Armand, Nature 2001, 414, 359–367.
- 2B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935.
- 3B. K. Guo, X. Q. Yu, X. G. Sun, M. F. Chi, Z. A. Qiao, J. Liu, Y. S. Hu, X. Q. Yang, J. B. Goodenough, S. Dai, Energy Environ. Sci. 2014, 7, 2220–2226.
- 4V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
- 5J. Chen, N. W. Ding, Z. F. Li, Q. Zhang, S. W. Zhong, Prog. Chem. 2015, 27, 1291–1301.
- 6L. Liu, F. Tian, X. Wang, Z. Yang, M. Zhou, X. Wang, React. Funct. Polym. 2012, 72, 45–49.
- 7S. R. Sivakkumar, D.-W. Kim, J. Electrochem. Soc. 2007, 154, A 134.
- 8J. Wang, J. Yang, J. Xie, N. Xu, Adv. Mater. 2002, 14, 963–965.
- 9F. Wu, S. Wu, R. Chen, J. Chen, S. Chen, Electrochem. Solid-State Lett. 2010, 13, A 29.
- 10W. Guo, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Energy Environ. Sci. 2012, 5, 5221–5225.
- 11K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, E. Hasegawa, Chem. Phys. Lett. 2002, 359, 351–354.
- 12X. L. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. B. Liu, V. Sprenkle, W. Wang, Adv. Mater. 2014, 26, 7649–7653.
- 13T. Janoschka, M. D. Hager, U. S. Schubert, Adv. Mater. 2012, 24, 6397–6409.
- 14K. Nakahara, K. Oyaizu, H. Nishide, Chem. Lett. 2011, 40, 222–227.
- 15Z. Song, H. Zhan, Y. Zhou, Angew. Chem. Int. Ed. 2010, 49, 8444–8448;
Angew. Chem. 2010, 122, 8622–8626.
10.1002/ange.201002439 Google Scholar
- 16Z. Song, H. Zhan, Y. Zhou, Chem. Commun. 2009, 448–450.
- 17W. Xu, A. Read, P. K. Koech, D. H. Hu, C. M. Wang, J. Xiao, A. B. Padmaperuma, G. L. Graff, J. Liu, J. G. Zhang, J. Mater. Chem. 2012, 22, 4032–4039.
- 18B. Häupler, A. Wild, U. S. Schubert, Adv. Energy Mater. 2015, 5, 1402034.
- 19B. F. Pan, J. H. Huang, Z. X. Feng, L. Zeng, M. N. He, L. Zhang, J. T. Vaughey, M. J. Bedzyk, P. Fenter, Z. C. Zhang, A. K. Burrell, C. Liao, Adv. Energy Mater. 2016, 6, 1600140 .
- 20Y. l. Liang, Y. Jing, S. Gheytani, K. Y. Lee, P. Liu, A. Facchetti, Y. Yao, Nat. Mater. 2017, 16, 841–848.
- 21H. L. Lyu, J. R. Liu, S. Mahurin, S. Dai, Z. H. Guo, X. G. Sun, J. Mater. Chem. A 2017, 5, 24083–24090.
- 22Y. Liang, Z. Tao, J. Chen, Adv. Energy Mater. 2012, 2, 742–769.
- 23Z. P. Song, H. S. Zhou, Energy Environ. Sci. 2013, 6, 2280–2301.
- 24A. F. Shestakov, O. V. Yarmolenko, A. A. Ignatova, A. V. Mumyatov, K. J. Stevenson, P. A. Troshin, J. Mater. Chem. A 2017, 5, 6532–6537.
- 25P. Sharma, D. Damien, K. Nagarajan, M. M. Shaijumon, M. Hariharan, J. Phys. Chem. Lett. 2013, 4, 3192–3197.
- 26H. Qin, Z. P. Song, H. Zhan, Y. H. Zhou, J. Power Sources 2014, 249, 367–372.
- 27S. R. Sivakkumar, P. C. Howlett, B. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Electrochim. Acta 2009, 54, 6844–6849.
- 28H. Wu, S. A. Shevlin, Q. Meng, W. Guo, Y. Meng, K. Lu, Z. Wei, Z. Guo, Adv. Mater. 2014, 26, 3338–3343.
- 29H. Lyu, J. Liu, S. Qiu, Y. Cao, C. Hu, S. Guo, Z. Guo, J. Mater. Chem. A 2016, 4, 9881–9889.
- 30Y. Yang, X. Fan, G. Casillas, Z. Peng, G. Ruan, G. Wang, M. J. Yacaman, J. M. Tour, ACS Nano 2014, 8, 3939–3946.
- 31E. Tahmasebi, Y. Yamini, M. Moradi, A. Esrafili, Anal. Chim. Acta 2013, 770, 68–74.
- 32I. Boyano, M. Bengoechea, I. de Meatza, O. Miguel, I. Cantero, E. Ochoteco, J. Rodrıguez, M. Lira-Cantu, P. Gomez-Romeroc, J. Power Sources 2007, 166, 471–477.
- 33Y. Huang, K. Li, J. Liu, X. Zhong, X. Duan, I. Shakir, Y. Xu, J. Mater. Chem. A 2017, 5, 2710–2716.
- 34Y. Zhang, Y. S. Huang, G. H. Yang, F. X. Bu, K. Li, I. Shakir, Y. X. Xu, ACS Appl. Mater. Interfaces 2017, 9, 15549–15556.
- 35G. H. Yang, Y. Zhang, Y. S. Huang, M. I. Shakir, Y. X. Xu, Phys. Chem. Chem. Phys. 2016, 18, 31361–31377.
- 36F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, J. Phys. Chem. C 2011, 115, 6057–6063.
- 37H. Lv, S. Qiu, G. Lu, Y. Fu, X. Li, C. Hu, J. Liu, Electrochim. Acta 2015, 151, 214–221.
- 38H. P. Wu, Q. Yang, Q. H. Meng, A. Ahmad, M. Zhang, L. Y. Zhu, Y. G. Liu, Z. X. Wei, J. Mater. Chem. A 2016, 4, 2115–2121.
- 39Z. Song, T. Xu, M. L. Gordin, Y. B. Jiang, I. T. Bae, Q. Xiao, H. Zhan, J. Liu, D. Wang, Nano Lett. 2012, 12, 2205–2211.
- 40D.-W. Kim, S. R. Sivakkumar, D. R. MacFarlane, M. Forsyth, Y.-K. Sun, J. Power Sources 2008, 180, 591–596.
- 41Z. Xiong, Y. Yun, H.-J. Jin, Materials 2013, 6, 1138–1158.
- 42H. Wang, H. Dai, Chem. Soc. Rev. 2013, 42, 3088–3113.
- 43M. Lee, J. Hong, H. Kim, H. D. Lim, S. B. Cho, K. Kang, C. B. Park, Adv. Mater. 2014, 26, 2558–2565.
- 44Y. Li, Z. Jian, M. Lang, C. Zhang, X. Huang, ACS Appl. Mater. Interfaces 2016, 8, 17352–17359.
- 45Y. Meng, H. Wu, Y. Zhang, Z. Wei, J. Mater. Chem. A 2014, 2, 10842.
- 46C.-P. Constantin, M.-D. Damaceanu, M. Bruma, M. Pinteala, Polym. Int. 2015, 64, 361–372.
- 47Z. H. Bi, M. P. Paranthaman, B. K. Guo, R. R. Unocic, H. M. Meyer, III, C. A. Bridges, X. G. Sun, S. Dai, J. Mater. Chem. A 2014, 2, 1818–1824.
- 48M. Strømme, G. A. Niklasson, C. G. Granqvist, Solid State Commun. 1995, 96, 151–154.
- 49C. Chen, X. Zhao, H.-B. Li, F. Gan, J. Zhang, J. Dong, Q. Zhang, Electrochim. Acta 2017, 229, 387–395.
- 50S. R. Sivakkumar, D. R. MacFarlane, M. Forsyth, D.-W. Kim, J. Electrochem. Soc. 2007, 154, A 834.
- 51K. H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, N. P. Dasgupta, J. Mater. Chem. A 2017, 5, 11671–11681.
- 52S. Trasatti, O. Petrii, Pure Appl. Chem. 1991, 63, 711–734.
- 53R. Savinell, R. Zeller, J. Adams, J. Electrochem. Soc. 1990, 137, 489–494.