Kinetics-Controlled Degradation Reactions at Crystalline LiPON/LixCoO2 and Crystalline LiPON/Li-Metal Interfaces
Corresponding Author
Dr. Kevin Leung
Sandia National Laboratories, MS 1415, Albuquerque, NM 87185 USA
Search for more papers by this authorDr. Alexander J. Pearse
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740, USA
Search for more papers by this authorDr. A. Alec Talin
Sandia National Laboratories, MS 9161, Livermore, CA, 94550 USA
Search for more papers by this authorDr. Elliot J. Fuller
Sandia National Laboratories, MS 9161, Livermore, CA, 94550 USA
Search for more papers by this authorProf. Gary W. Rubloff
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740, USA
Search for more papers by this authorDr. Normand A. Modine
Sandia National Laboratories, MS 1415, Albuquerque, NM 87185 USA
Search for more papers by this authorCorresponding Author
Dr. Kevin Leung
Sandia National Laboratories, MS 1415, Albuquerque, NM 87185 USA
Search for more papers by this authorDr. Alexander J. Pearse
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740, USA
Search for more papers by this authorDr. A. Alec Talin
Sandia National Laboratories, MS 9161, Livermore, CA, 94550 USA
Search for more papers by this authorDr. Elliot J. Fuller
Sandia National Laboratories, MS 9161, Livermore, CA, 94550 USA
Search for more papers by this authorProf. Gary W. Rubloff
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740, USA
Search for more papers by this authorDr. Normand A. Modine
Sandia National Laboratories, MS 1415, Albuquerque, NM 87185 USA
Search for more papers by this authorGraphical Abstract
Stable faces from two sides: In solid-state batteries, lithium/lithium phosphorous oxynitride (LiPON) and LixCoO2/LiPON interfaces are predicted to be thermodynamically unstable. Experiments suggest that more substantial disorder exists at the cathode interface. Using DFT methods and LiPON models with atomic layer deposition-like stoichiometry, we predict much faster degradation rates at LixCoO2/LiPON interfaces. LiPON structural motifs which readily react are identified.
Abstract
Detailed understanding of solid–solid interface structure–function relationships is critical for the improvement and wide deployment of all-solid-state batteries. The interfaces between lithium phosphorous oxynitride (LiPON) solid electrolyte material and lithium metal anode, and between LiPON and LixCoO2 cathode, have been reported to generate solid–electrolyte interphase (SEI)-like products and/or disordered regions. Using electronic structure calculations and crystalline LiPON models, we predict that LiPON models with purely P−N−P backbones are kinetically inert towards lithium at room temperature. In contrast, transfer of oxygen atoms from low-energy LixCoO2(104) surfaces to LiPON is much faster under ambient conditions. The mechanisms of the primary reaction steps, LiPON structural motifs that readily reacts with lithium metal, experimental results on amorphous LiPON to partially corroborate these predictions, and possible mitigation strategies to reduce degradations are discussed. LiPON interfaces are found to be useful case studies for highlighting the importance of kinetics-controlled processes during battery assembly at moderate processing temperatures.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201800027-sup-0001-misc_information.pdf468.9 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, J. Electrochem. Soc. 2017, 164, A 1731.
- 2A. Mauger, M. Armand, C. M. Julien, K. Zaghib, J. Power Sources 2017, 353, 333.
- 3Y. Ren, K. Chen, R. Chen, T. Liu, Y. Zhang, C.-W. Nan, J. Am. Ceram. Soc. 2015, 98, 3603.
- 4C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363.
- 5J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, C. D. Evans, Solid State Ionics 2000, 135, 33.
- 6J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, J. Power Sources 1993, 43, 103.
- 7A. C. Luntz, J. Voss, K. Reuter, J. Phys. Chem. Lett. 2015, 6, 4599.
- 8Z. Wang, D. Santhanagopalan, W. Zhang, F. Wang, H. L. Xin, K. He, J. Li, N. J. Dudney, Y. S. Meng, Nano Lett. 2016, 16, 3760.
- 9Z. Y. Wang, J. Z. Lee, H. L. L. Xin, L. L. Han, N. Grillon, D. Guy-Bouyssou, E. Bouyssou, M. Proust, Y. S. Meng, J. Power Sources 2016, 324, 342.
- 10D. Santhanagopalan, D. Qian, T. McGilvray, Z. Wang, F. Wang, F. Camino, J. Graetz, N. J. Dudney, Y. S. Meng, J. Phys. Chem. Lett. 2014, 5, 298.
- 11Y. Aizawa, K. Yamamoto, T. Sato, H. Murata, R. Yoshida, C. A. J. Fisher, T. Kato, Y. Iriyama, T. Hirayama, Ultramicroscopy 2017, 178, 20.
- 12K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita, C. A. J. Fisher, K. Nonaka, Y. Sugita, Z. Ogumi, Angew. Chem. Int. Ed. 2010, 49, 4414;
- 13S. Jacke, J. Song, G. Cherkashinin, L. Dimesso, W. Jaegermann, Ionics 2010, 16, 769.
- 14S. Jacke, J. Song, L. Dimesso, J. Brötz, D. Becker, W. Jaegermann, J. Power Sources 2011, 196, 6911.
- 15A. Schwöbel, R. Hausbrand, W. Jaegermann, Solid State Ionics 2015, 273, 51.
- 16R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Mater. Sci. Eng. B 2015, 192, 3.
- 17M. Fingerle, R. Buchheit, S. Sicolo, K. Albe, R. Hausbrand, Chem. Mater. 2017, 29, 7675.
- 18J. Haruyama, K. Sodeyama, Y. Tateyama, ACS Appl. Mater. Interfaces 2017, 9, 286.
- 19J. Haruyama, K. Sodeyama, L. Han, K. Takada, Y. Tateyama, Chem. Mater. 2014, 26, 4248.
- 20N. D. Lepley, N. A. W. Holzwarth, Phys. Rev. B 2015, 92, 214201.
- 21N. D. Lepley, N. A. W. Holzwarth, Y. A. Du, Phys. Rev. B 2013, 88, 104103.
- 22K. C. Santosh, K. Xiong, R. C. Longo, K. Cho, J. Power Sources 2013, 244, 136.
- 23M. Sumita, T. Ohno, Phys. Chem. Chem. Phys. 2016, 18, 4316.
- 24M. Sumita, Y. Tanaka, M. Ikeda, T. Ohno, J. Phys. Chem. C 2015, 119, 14.
- 25S. S. Chandrasekaran, P. Murugan, Appl. Surf. Sci. 2017, 418, 17.
- 26K. Thai, E. Lee, J. Electrochem. Soc. 2017, 164, A 594.
- 27J. Song, S. Jacke, G. Cherkashinin, S. Schmid, Q. Dong, R. Hausbrand, W. Jaegermann, Electrochem. Solid-State Lett. 2011, 14, A 189.
- 28K. Leung, A. Leenheer, J. Phys. Chem. C 2015, 119, 10234.
- 29Operationally, assembling interfaces often involves atomic layer deposition, plasma laser deposition, and other techniques to deposit LiPON or other solid electrolytes on to electrode surfaces. These techniques do not correspond to pressing the flat surfaces of two preformed materials together. Intermixing of electrolye and electrode components at the interface may occur naturally during growth; therefore, the SEI interlayers may result from gas-phase reactions in addition to degradation of fully formed LiPON. What is needed to address such growth conditions is a comprehensive science of processing conditions.
- 30C. F. Lin, M. Noked, A. C. Kozen, C. Y. Liu, O. Zhao, K. Gregorczyk, L. B. Hu, S. B. Lee, G. W. Rubloff, ACS Nano 2016, 10, 2693.
- 31C. Gong, D. Ruzmetov, A. Pearse, D. Ma, J. N. Munday, G. Rubloff, A. A. Talin, M. S. Leite, ACS Appl. Mater. Interfaces 2015, 7, 26007.
- 32V. P. Oleshko, T. Lam, D. Ruzmetov, P. Haney, H. J. Lezec, A. V. Davydov, S. Krylyuk, J. Cumings, A. A. Talin, Nanoscale 2014, 6, 11756.
- 33A. J. Pearse, T. E. Schmitt, E. J. Fuller, F. El-Gabaly, C.-F. Lin, K. Gerasopoulos, A. C. Kozen, A. A. Talin, G. W. Rubloff, K. E. Gregorczyk, Chem. Mater. 2017, 29, 3740.
- 34A. C. Kozen, A. J. Pearse, C.-F. Lin, M. Noked, G. W. Rubloff, Chem. Mater. 2015, 27, 5324.
- 35D. Li, Z. Ma, J. Xu, Y. Li, K. Xie, Mater. Lett. 2014, 134, 237.
- 36Y. Yoon, C. Park, J. Kim, D. Shin, Electrochim. Acta 2013, 111, 144.
- 37Y. Kim, G. M. Veith, J. Nanda, R. R. Unocic, M. Chi, N. J. Dudney, Electrochim. Acta 2011, 56, 6573.
- 38C. S. Nimisha, G. M. Rao, N. Munichandraiah, G. Natarajan, D. C. Cameron, Solid State Ionics 2011, 185, 47.
- 39Q. Zhang, A. K. Kercher, G. M. Veith, V. Sarbada, A. B. Brady, J. Li, E. A. Stach, R. Hull, K. J. Takeuchi, E. S. Takeuchi, N. J. Dudney, A. C. Marschilok, J. Electrochem. Soc. 2017, 164, A 1503.
- 40P. D. Mani, S. Saraf, V. Singh, M. Real-Robert, A. Vijayakumar, S. J. Duranceau, S. Seal, K. R. Coffey, Solid State Ionics 2016, 287, 48.
- 41H. Porthault, C. Decaux, Electrochim. Acta 2016, 194, 330.
- 42S. Tintignac, R. Baddour-Hadjean, J. P. Pereira-Ramos, R. Salot, Electrochim. Acta 2014, 146, 472.
- 43S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann, J. Janek, Solid State Ionics 2015, 278, 98.
- 44Y. Iriyama, T. Kako, C. Yada, T. Abe, Z. Ogumi, Solid State Ionics 2005, 176, 2371.
- 45K. Leung, S. B. Rempe, M. E. Foster, Y. Ma, J. M. M. de Hoz, N. Sai, P. B. Balbuena, J. Electrochem. Soc. 2014, 161, A 213.
- 46D. Kramer, G. Ceder, Chem. Mater. 2009, 21, 3799.
- 47D. Qian, Y. Hinuma, H. Chen, L.-S. Du, K. J. Carroll, G. Ceder, C. P. Grey, Y. S. Meng, J. Am. Chem. Soc. 2012, 134, 6096.
- 48L. Giordano, P. Karayaylali, Y. Yu, Y. Katayama, F. Maglia, S. Lux, Y. Shao-Horn, J. Chem. Phys. Lett. 2017, 8, 3881.
- 49Y. A. Du, N. A. W. Holzwarth, Phys. Rev. B 2010, 81, 184106.
- 50K. Senevirathne, C. S. Day, M. D. Gross, A. Lachgar, N. A. W. Holzwarth, Solid State Ionics 2013, 233, 95.
- 51E. Guille, G. Vallverdu, I. Baraille, J. Chem. Phys. 2014, 141, 244703.
- 52S. Sicolo, K. Albe, J. Power Sources 2016, 331, 382.
- 53S. Sicolo, M. Fingerle, R. Hausbrand, K. Albe, J. Power Sources 2017, 354, 124.
- 54S. Xu, G. Luo, R. Jacobs, S. Fang, M. K. Mahanthappa, R. J. Hamers, D. Morgan, ACS Appl. Mater. Interfaces 2017, 9, 20545.
- 55J. C. Garcia, J. Bareno, J. Yan, G. Chen, A. Hauser, J. R. Croy, H. Iddir, J. Phys. Chem. C 2017, 121, 8290.
- 56Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 2015, 7, 23685.
- 57L. Sang, R. T. Haasch, A. A. Gewirth, R. G. Nuzzo, Chem. Mater. 2017, 29, 3029.
- 58K. Leung, F. Soto, K. Hankins, P. B. Balbuena, K. L. Harrison, J. Phys. Chem. C 2016, 120, 6302.
- 59K. Leung, J. Phys. Chem. C 2012, 116, 9852.
- 60K. Leung, Chem. Mater. 2017, 29, 2550.
- 61K. Letchworth-Weaver, T. A. Arias, Phys. Rev. B 2012, 86, 075140.
- 62C. D. Taylor, S. A. Wasileski, J.-S. Filhol, M. Neurock, Phys. Rev. B 2006, 73, 165402.
- 63M. Nielsen, M. Bjorketun, M. H. Hansen, J. Rossmeisl, Surf. Sci. 2015, 631, 2.
- 64Y. Li, K. Leung, Y. Qi, Acc. Chem. Res. 2016, 49, 2363.
- 65G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.
- 66L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, J. Li, J. Power Sources 2017, 342, 175.
- 67J. O. M. Bockris, A. K. N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry 2A. Fundamentals of Electrodics, 2nd ed., Kluwer/Plenum, New York/London, 2000, p. 1083.
- 68K. Chan, J. K. Norskov, J. Phys. Chem. Lett. 2015, 6, 2663.
- 69Y. Shin, K. A. Persson, ACS Appl. Mater. Interfaces 2016, 8, 25595.
- 70J. L. Tebbe, T. F. Fuerst, C. B. Musgrave, ACS Appl. Mater. Interfaces 2016, 8, 26664.
- 71Y. A. Du, N. A. W. Holzwarth, Phys. Rev. B 2008, 78, 174301.
- 72M. Ménétrier, I. Saadoune, S. Levasseur, C. Delmas, J. Mater. Chem. 1999, 9, 1135.
- 73A. Milewska, K. Swierczek, J. Tobola, F. Boudoire, Y. Hu, D. K. Bora, B. S. Mun, A. Braun, J. Molenda, Solid State Ionics 2014, 263, 110.
- 74E. J. Fuller, F. El Gabaly, F. Leonard, S. Agarwal, S. J. Plimpton, R. B. Jacobs-Gedrim, C. D. James, M. J. Marinella, A. A. Talin, Adv. Mater. 2017, 29, 1604310.
- 75A. Marusczyk, J. M. Albina, T. Hammerschmidt, R. Drautz, T. Eckl, G. Henkelman, J. Mater. Chem. A 2017, 5, 15183.
- 76G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 77G. Kresse, J. Joubert, Phys. Rev. B 1999, 59, 1758.
- 78J. Paier, M. Marsman, G. Kresse, J. Chem. Phys. 2007, 127, 024103.
- 79J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 80S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 1998, 57, 1505.
- 81C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
- 82J. Neugebauer, M. Scheffler, Phys. Rev. B 1992, 46, 16067.
- 83G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901.
- 84N. Marzari, D. Vanderbilt, Phys. Rev. B 1997, 56, 12847.