Bismuth Vanadate with Electrostatically Anchored 3D Carbon Nitride Nano-networks as Efficient Photoanodes for Water Oxidation
Peng Luan
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorYing Zhang
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorXiaolong Zhang
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorDr. Zhijun Li
Ministry of Education Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorRagesh Prathapan
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorProf. Udo Bach
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorCorresponding Author
Dr. Jie Zhang
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorPeng Luan
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorYing Zhang
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorXiaolong Zhang
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorDr. Zhijun Li
Ministry of Education Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080 P. R. China
Search for more papers by this authorRagesh Prathapan
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorProf. Udo Bach
Department of Chemical Engineering, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorCorresponding Author
Dr. Jie Zhang
School of Chemistry, Monash University, Clayton, VIC, 3800 Australia
Search for more papers by this authorGraphical Abstract
Electrostatically anchored: When decorated with FeOOH/NiOOH, bismuth vanadate with electrostatically anchored three-dimensional C3N4 nano-networks is a highly efficient photoanode for solar water oxidation. This superior performance originates from the enhanced charge separation, increased electrode–electrolyte interfacial area, and improved surface reaction kinetics. This work provides a new pathway for designing and fabricating efficient nanojunction-based photoanodes for solar water oxidation.
Abstract
In this study, we report a photoanode consisting of a polymeric/inorganic nanojunction between novel nanostructured 3D C3N4 nano-networks and BiVO4 substrate. This nanojunction is formed such that 3D C3N4 nano-networks with a positively charged surface are efficiently anchored on the BiVO4 photoanode with a negatively charged surface. This electrostatic self-assembly can initiate and contribute to an intimate contact at the interfaces, leading to an enhanced photoelectrochemical activity and stability compared with that fabricated by non-electrostatic assembly. The C3N4 nano-network/BiVO4 photoanode achieved a remarkable photocurrent density of 4.87 mA cm−2 for water oxidation at 1.23 V (vs. reversible hydrogen electrode) after depositing FeOOH/NiOOH as oxygen-evolution co-catalyst, which is among the highest photocurrent densities reported so far for BiVO4-based photoanodes.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201801119-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473.
- 2M. Grätzel, Nature 2001, 414, 338–344.
- 3K. Sivula, J. Phys. Chem. Lett. 2013, 4, 1624–1633.
- 4C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 2017, 46, 4645–4660.
- 5Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci. 2013, 6, 347–370.
- 6J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900–1909.
- 7P. Chakthranont, T. R. Hellstern, J. M. McEnaney, T. F. Jaramillo, Adv. Energy Mater. 2017, 7, 1701515.
- 8Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou, P.-C. Hsu, R. Zhang, Z. Liang, S. Fan, Y. Zhang, Y. Cui, Sci. Adv. 2016, 2, e 1501764.
- 9Y. Park, K. J. McDonald, K. S. Choi, Chem. Soc. Rev. 2013, 42, 2321–2337.
- 10T. W. Kim, K.-S. Choi, Science 2014, 343, 990–994.
- 11X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am. Chem. Soc. 2015, 137, 8356–8359.
- 12M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, K. Domen, J. Am. Chem. Soc. 2015, 137, 5053–5060.
- 13F. S. Hegner, I. Herraiz-Cardona, D. Cardenas-Morcoso, N. R. López, J.-R. N. Galán-Mascarós, S. Gimenez, ACS Appl. Mater. Interfaces 2017, 9, 37671–37681.
- 14X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim, J. H. Park, Nat. Commun. 2014, 5, 4775–4782.
- 15M. Zhou, J. Bao, Y. Xu, J. Zhang, J. Xie, M. Guan, C. Wang, L. Wen, Y. Lei, Y. Xie, ACS Nano 2014, 8, 7088–7098.
- 16Y. Zhou, L. Zhang, L. Lin, B. R. Wygant, Y. Liu, Y. Zhu, Y. Zheng, C. B. Mullins, Y. Zhao, X. Zhang, G. Yu, Nano Lett. 2017, 17, 8012–8017.
- 17J. H. Kim, Y. Jo, J. H. Kim, J. W. Jang, H. J. Kang, Y. H. Lee, D. S. Kim, Y. Jun, J. S. Lee, ACS Nano 2015, 9, 11820–11829.
- 18T. W. Kim, Y. Ping, G. A. Galli, K. S. Choi, Nat. Commun. 2015, 6, 8769–8779.
- 19M. T. Mayer, Y. Lin, G. Yuan, D. Wang, Acc. Chem. Res. 2013, 46, 1558–1566.
- 20P. Luan, M. Xie, D. Liu, X. Fu, L. Jing, Sci. Rep. 2014, 4, 6180–6186.
- 21P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, X. Zheng, Nano Lett. 2014, 14, 1099–1105.
- 22M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Adv. Energy Mater. 2014, 4, 1300995.
- 23W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev. 2016, 116, 7159–7329.
- 24Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 68–89;
Angew. Chem. 2012, 124, 70–92.
10.1002/ange.201101182 Google Scholar
- 25X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80.
- 26Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 2015, 54, 12868–12884;
Angew. Chem. 2015, 127, 13060–13077.
10.1002/ange.201501788 Google Scholar
- 27G. Zhang, G. Li, Z. A. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2017, 56, 13445–13449;
Angew. Chem. 2017, 129, 13630–13634.
10.1002/ange.201706870 Google Scholar
- 28J. Ran, T. Y. Ma, G. Gao, X.-W. Du, S. Z. Qiao, Energy Environ. Sci. 2015, 8, 3708–3717.
- 29Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 2016, 10, 2745–2751.
- 30S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 2015, 27, 2150–2176.
- 31Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S. Z. Qiao, Energy Environ. Sci. 2012, 5, 6717–6731.
- 32J. Su, Z. Bai, B. Huang, X. Quan, G. Chen, Nano Energy 2016, 24, 148–157.
- 33Y. Hou, F. Zuo, A. P. Dagg, J. Liu, P. Feng, Adv. Mater. 2014, 26, 5043–5049.
- 34M. Basu, Z. W. Zhang, C. J. Chen, T. H. Lu, S. F. Hu, R. S. Liu, ACS Appl. Mater. Interfaces 2016, 8, 26690–26696.
- 35Q. Ruan, W. Luo, J. Xie, Y. Wang, X. Liu, Z. Bai, C. J. Carmalt, J. Tang, Angew. Chem. Int. Ed. 2017, 56, 8221–8225;
Angew. Chem. 2017, 129, 8333–8337.
10.1002/ange.201703372 Google Scholar
- 36J. Xu, M. Shalom, ACS Appl. Mater. Interfaces 2016, 8, 13058–13063.
- 37C. Feng, Z. Wang, Y. Ma, Y. Zhang, L. Wang, Y. Bi, Appl. Catal. B 2017, 205, 19–23.
- 38W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A. R. Mohamed, Nano Energy 2015, 13, 757–770.
- 39T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2014, 53, 7281–7285; Angew. Chem. 2014, 126, 7409–7413.
- 40L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater. 2015, 25, 5360–5367.
- 41Y. Wang, W. Wang, H. Mao, Y. Lu, J. Lu, J. Huang, Z. Ye, B. Lu, ACS Appl. Mater. Interfaces 2014, 6, 12698–13706.
- 42B. Zhu, P. Xia, W. Ho, J. Yu, Appl. Surf. Sci. 2015, 344, 188–195.
- 43H. Zhao, H. Yu, X. Quan, S. Chen, Y. Zhang, H. Zhao, H. Wang, Appl. Catal. B 2014, 152–153, 46–50.
- 44Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, ACS Nano 2015, 9, 12480–12487.
- 45S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452–2456.
- 46B. Zhang, G. Dong, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Catal. Sci. Technol. 2017, 7, 4971–4976.
- 47K.-H. Ye, Z. Wang, J. Gu, S. Xiao, Y. Yuan, Y. Zhu, Y. Zhang, W. Mai, S. Yang, Energy Environ. Sci. 2017, 10, 772–779.
- 48P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Adv. Funct. Mater. 2012, 22, 4763–4770.
- 49X. Shi, L. Cai, M. Ma, X. Zheng, J. H. Park, ChemSusChem 2015, 8, 3192–3203.
- 50Y. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Nano Lett. 2016, 16, 2268–2277.