A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery
Alessandro Bellè
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorDr. Tommaso Tabanelli
Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
Search for more papers by this authorDr. Giulia Fiorani
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorProf. Alvise Perosa
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorProf. Fabrizio Cavani
Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
Search for more papers by this authorCorresponding Author
Prof. Maurizio Selva
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorAlessandro Bellè
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorDr. Tommaso Tabanelli
Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
Search for more papers by this authorDr. Giulia Fiorani
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorProf. Alvise Perosa
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorProf. Fabrizio Cavani
Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
Search for more papers by this authorCorresponding Author
Prof. Maurizio Selva
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venezia-Mestre, Italy
Search for more papers by this authorGraphical Abstract
It's a phase: Two reactions of levulinic acid (LA), hydrogenation and reductive amination with cyclohexylamine, are explored in a multiphase system. By tuning the relative volume of the immiscible water/hydrocarbon phases and the concentration of the aqueous solution, quantitative conversion of LA can be achieved with formation of γ-valerolactone (GVL) or N-(cyclohexylmethyl)pyrrolidone in >95 and 88 % selectivity, respectively.
Abstract
At 60–150 °C and 15–35 bar H2, two model reactions of levulinic acid (LA), hydrogenation and reductive amination with cyclohexylamine, were explored in a multiphase system composed of an aqueous solution of reactants, a hydrocarbon, and commercial 5 % Ru/C as a heterogeneous catalyst. By tuning the relative volume of the immiscible water/hydrocarbon phases and the concentration of the aqueous solution, a quantitative conversion of LA was achieved with formation of γ-valerolactone or N-(cyclohexylmethyl)pyrrolidone in >95 and 88 % selectivity, respectively. Additionally, the catalyst could be segregated in the hydrocarbon phase and recycled in an effective semi-continuous protocol. Under such conditions, formic acid additive affected the reactivity of LA through a competitive adsorption on the catalyst surface. This effect was crucial to improve selectivity for the reductive amination process. The comparison of 5 % Ru/C with a series of carbon supports demonstrated that the segregation phenomenon in the hydrocarbon phase, never previously reported, was pH-dependent and effective for samples displaying a moderate surface acidity.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201900925-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Tundo, A. Perosa, Chem. Soc. Rev. 2007, 36, 532–550;
- 1b Multiphase Homogeneous Catalysis (Eds.: ), Wiley-VCH, Weinheim, 2005;
- 1c Regulated Systems for Multiphase Catalysis, Topics in Organometallic Chemistry (Eds.: ), Springer, Berlin, 2008.
- 2
- 2aV. I. Pârvulescu, C. Hardacre, Chem. Rev. 2007, 107, 2615–2665;
- 2b Nanocatalysis in Ionic Liquids (Ed.: ), Wiley-VCH, Weinheim, 2016;
- 2cP. Canton, A. Perosa, M. Selva, Curr. Org. Chem. 2017, 21, 2445–2454.
- 3 Catalysis in Ionic Liquids: From Catalyst Synthesis to Application, Catalysis Series No. 15 (Eds.: ), The Royal Society of Chemistry, London, 2014.
- 4
- 4aS. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, Y. Xie, Green Chem. 2008, 10, 1280–1283;
- 4bJ. Y. G. Chan, Y. Zhang, ChemSusChem 2009, 2, 731–734;
- 4cT. Ståhlberg, W. Fu, J. M. Woodley, A. Riisager, ChemSusChem 2011, 4, 451–458.
- 5M. Selva, M. Gottardo, A. Perosa, ACS Sustainable Chem. Eng. 2013, 1, 180–189.
- 6K. Shill, S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark, H. W. Blanch, Biotechnol. Bioeng. 2011, 108, 511–520.
- 7M. Sendovski, N. Nir, A. Fishman, J. Agric. Food Chem. 2010, 58, 2260–2265.
- 8B. Saha, M. M. Abu-Omar, Green Chem. 2014, 16, 24–38.
- 9Y. Li, G. Lv, Y. Wang, T. Deng, Y. Wang, X. Hou, Y. Yang, ChemistrySelect 2016, 1, 1252–1255.
- 10
- 10aL. A. Blanchard, J. F. Brennecke, Ind. Eng. Chem. Res. 2001, 40, 287–292;
- 10bS. Keskin, D. Kayrak-Talay, U. Akman, O. Hortacsu, J. Supercrit. Fluids 2007, 43, 150–180.
- 11J.-M. Andanson, F. Jutz, A. Baiker, J. Phys. Chem. B 2009, 113, 10249–10254.
- 12S. V. Dzyuba, R. A. Bartsch, Angew. Chem. Int. Ed. 2003, 42, 148–150;
- 13
- 13aX. Sun, Z. Liu, Z. Xue, Y. Zhanga, T. Mu, Green Chem. 2015, 17, 2719–2722;
- 13bC. Shi, J. Xin, X. Liu, X.-G. Lu, S. Zhang, ACS Sustainable Chem. Eng. 2016, 4, 557–563.
- 14C. I. Melo, R. Bogel-Łukasik, E. Bogel-Łukasik, J. Supercrit. Fluids 2012, 61, 191–198.
- 15A. M. da Costa Lopes, M. Brenner, P. Falé, L. B. Roseiro, R. Bogel-Łukasik, ACS Sustainable Chem. Eng. 2016, 4, 3357–3367.
- 16D. L. Minnick, A. M. Scurto, Chem. Commun. 2015, 51, 12649–12652.
- 17
- 17aC. Michel, P. Gallezot, ACS Catal. 2015, 5, 4130–4132;
- 17bM. Pagliaro, M. Rossi in The Future of Glycerol, 2nd ed., Royal Society of Chemistry, London, 2010;
- 17cC. Michel, J. Zaffran, A. M. Ruppert, J. Matras-Michalska, M. Jędrzejczyk, J. Grams, P. Sautet, Chem. Commun. 2014, 50, 12450–12453;
- 17dJ. Tan, J. Cui, G. Ding, T. Deng, Y. Zhu, Y.-W. Li, Catal. Sci. Technol. 2016, 6, 1469–1475;
- 17eM. G. Al-Shaal, W. R. H. Wright, R. Palkovits, Green Chem. 2012, 14, 1260–1263;
- 17fA. M. R. Galletti, C. Antonetti, V. De Luise, M. Martinelli, Green Chem. 2012, 14, 688–694;
- 17gJ. Tan, J. Cui, T. Deng, X. Cui, G. Ding, Y. Zhu, Y. Li, ChemCatChem 2015, 7, 508–512.
- 18M. Fabris, V. Lucchini, M. Noè, A. Perosa, M. Selva, Chem. Eur. J. 2009, 15, 12273–12282.
- 19
- 19aD. S. Cameron, S. J. Cooper, I. L. Dodgson, B. Harrison, J. W. Jenkins, Catal. Today 1990, 7, 113–137;
- 19bE. Auer, A. Freund, J. Pietsch, T. Tacke, Appl. Catal. A 1998, 173, 259–271.
- 20
- 20aG. M. Whitesides, C. L. Hill, J.-C. Brunie, Ind. Eng. Chem. Proc. Des. Dev. 1976, 15, 226–227;
- 20bA.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth, Angew. Chem. Int. Ed. 2004, 43, 4303–4306;
- 21F. K. Kazi, A. D. Patel, J. C. Serrano-Ruiz, J. A. Dumesic, R. P. Anex, Chem. Eng. J. 2011, 169, 329–338.
- 22I. Sádaba, M. L. Granados, A. Riisager, E. Taarning, Green Chem. 2015, 17, 4133–4145.
- 23Z.-P. Yan, L. Lin, S. Liu, Energy Fuels 2009, 23, 3853–3858.
- 24U. K. Singh, M. A. Vannice, Appl. Catal. A 2001, 213, 1–24.
- 25J. M. Tukacs, B. Fridrich, G. Dibó, E. Székely, L. T. Mika, Green Chem. 2015, 17, 5189–5195.
- 26
- 26aP. Puthiaraj, P. Suresh, K. Pitchumani, Green Chem. 2014, 16, 2865–2875;
- 26bD. J. Macquarrie, B. Gotov, S. Toma, Platinum Met. Rev. 2001, 45, 102–110.
- 27
- 27aL. Qi, Y. F. Mui, S. W. Lo, M. Y. Lui, G. R. Akien, I. T. Horvath, ACS Catal. 2014, 4, 1470–1477;
- 27bF. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 2007, 46, 7703–7710.
- 28C. Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966–3968;
- 29
- 29aV. Fábos, L. T. Mika, I. T. Horváth, Organometallics 2014, 33, 181–187;
- 29bL. Deng, J. Li, D. M. Lai, Y. Fu, Q. X. Guo, Angew. Chem. Int. Ed. 2009, 48, 6529–6532;
- 30A. M. Ruppert, M. Jędrzejczyk, O. Sneka-Płatek, N. Keller, A. S. Dumon, C. Michel, P. Sautet, J. Grams, Green Chem. 2016, 18, 2014–2028.
- 31A. S. Touchy, S. M. A. H. Siddiki, K. Kon, K.-I. Shimizu, ACS Catal. 2014, 4, 3045–3050.
- 32X.-L. Du, L. He, S. Zhao, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Angew. Chem. Int. Ed. 2011, 50, 7815–7819;
- 33G. Gao, P. Sun, Y. Li, F. Wang, Z. Zhao, Y. Qin, F. Li, ACS Catal. 2017, 7, 4927–4935.
- 34Y. Ogiwara, T. Uchiyama, N. Sakai, Angew. Chem. Int. Ed. 2016, 55, 1864–1867;
- 35S. Wang, H. Huang, C. Bruneau, C. Fischmeister, ChemSusChem 2017, 10, 4150–4154.
- 36J. J. Martínez, L. Silva, H. A. Rojas, G. P. Romanelli, L. A. Santos, T. C. Ramalho, M. H. Brijaldo, F. B. Passos, Catal. Today 2017, 296, 118–126.
- 37C. Wu, X. Luo, H. Zhang, X. Liu, G. Ji, Z. Liu, Z. Liu, Green Chem. 2017, 19, 3525–3529.
- 38C. Ortiz-Cervantes, M. Flores-Alamo, J. J. García, Tetrahedron Lett. 2016, 57, 766–771.
- 39Under solvent-free conditions (without water, experiments not shown in Table 1), a further slight increase of the pyrrolidone amount up to 35 % was observed at complete conversion, thereby confirming the detrimental role of water for the reductive amination of LA.
- 40J. D. Vidal, M. J. Climent, P. Concepción, A. Corma, S. Iborra, M. J. Sabater, ACS Catal. 2015, 5, 5812–5821.
- 41J. D. Vidal, M. J. Climent, P. Concepción, A. Corma, S. Iborra, ChemSusChem 2017, 10, 119–128.
- 42R. W. Layer, Chem. Rev. 1963, 63, 489–510.
- 43A. E. Aksoylu, M. Madalena, A. Freitas, M. F. R. Pereira, J. L. Figueiredo, Carbon 2001, 39, 175–185.
- 44D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Chem. Eng. J. 2008, 140, 32–42.
- 45M. N. Nagornaya, G. I. Razdyakonova, S. Y. Khodakova, Procedia Eng. 2016, 152, 563–569.
- 46J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Orfao, Carbon 1999, 37, 1379–1389.
- 47J. J. Venter, M. A. Vannice, Carbon 1988, 26, 889–902.
- 48J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Orfao, Ind. Eng. Chem. Res. 2007, 46, 4110–4115.
- 49S. L. Goertzen, K. D. Theriault, A. M. Oickle, A. C. Tarasuk, H. A. Andreas, Carbon 2010, 48, 1252–1261.
- 50G. Busca, Phys. Chem. Chem. Phys. 1999, 1, 723–736.
- 51M. Castellà-Ventura, Y. Akacem, E. Kassab, J. Phys. Chem. C 2008, 112, 19045–19054.
- 52C. Pevida, M. G. Plaza, B. Arias, J. Fermoso, F. Rubiera, J. J. Pis, Appl. Surf. Sci. 2008, 254, 7165–7172.