Lignin-First Fractionation of Softwood Lignocellulose Using a Mild Dimethyl Carbonate and Ethylene Glycol Organosolv Process
Alessandra De Santi
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorDr. Maxim V. Galkin
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorDr. Ciaran W. Lahive
Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorDr. Peter J. Deuss
Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dr. Katalin Barta
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
Search for more papers by this authorAlessandra De Santi
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorDr. Maxim V. Galkin
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorDr. Ciaran W. Lahive
Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorDr. Peter J. Deuss
Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dr. Katalin Barta
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, The Netherlands
Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
Search for more papers by this authorGraphical Abstract
A walk on the mild side: A mild lignin-first fractionation process using sulfuric acid as a catalyst and ethylene glycol as a stabilization agent in dimethyl carbonate was developed to produce a single monophenolic product and cellulose to yield 85 % glucose upon enzymatic hydrolysis from pine lignocellulose.
Abstract
A mild lignin-first acidolysis process (140 °C, 40 min) was developed using the benign solvent dimethyl carbonate (DMC) and ethylene glycol (EG) as a stabilization agent/solvent to produce a high yield of aromatic monophenols directly from softwood lignocellulose (pine, spruce, cedar, and Douglas fir) with a depolymerization efficiency of 77–98 %. Under the optimized conditions (140 °C, 40 min, 400 wt % EG and 2 wt % H2SO4 to pinewood), up to 9 wt % of the aromatic monophenol was produced, reaching a degree of delignification in pinewood of 77 %. Cellulose was also preserved, as evidenced by a 85 % glucose yield after enzymatic digestion. An in-depth analysis of the depolymerization oil was conducted by using GC-MS, HPLC, 2 D-NMR, and size-exclusion chromatography, which provided structural insights into lignin-derived dimers and oligomers and the composition of the sugars and derived molecules. Mass balance evaluation was performed.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc201903526-sup-0001-misc_information.pdf3.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1V. K. Ponnusamy, D. D. Nguyen, J. Dharmaraja, S. Shobana, J. R. Banu, R. G. Saratale, S. W. Chang, G. Kumar, Bioresour. Technol. 2019, 271, 462–472.
- 2Z. Sun, B. Fridrich, A. De Santi, S. Elangovan, K. Barta, Chem. Rev. 2018, 118, 614–678.
- 3L. Shuai, B. Saha, Green Chem. 2017, 19, 3752–3758.
- 4W. Schutyser, T. Renders, S. Van Den Bosch, S. F. Koelewijn, G. T. Beckham, B. F. Sels, Chem. Soc. Rev. 2018, 47, 852–908.
- 5L. Shuai, M. T. Amiri, Y. M. Questell-Santiago, F. Héroguel, Y. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J. S. Luterbacher, Science 2016, 354, 329–334.
- 6C. S. Lancefield, I. Panovic, P. J. Deuss, K. Barta, N. J. Westwood, Green Chem. 2017, 19, 202–214.
- 7D. S. Zijlstra, A. De Santi, B. Oldenburger, J. De Vries, K. Barta, P. J. Deuss, JoVE J. Vis. Exp. 2019, 2019, e58575.
- 8P. J. Deuss, C. S. Lancefield, A. Narani, J. G. de Vries, N. J. Westwood, K. Barta, Green Chem. 2017, 19, 2774–2782.
- 9T. Renders, S. Van Den Bosch, S. F. Koelewijn, W. Schutyser, B. F. Sels, Energy Environ. Sci. 2017, 10, 1551–1557.
- 10E. M. Anderson, M. L. Stone, M. J. Hülsey, G. T. Beckham, Y. Román-Leshkov, ACS Sustainable Chem. Eng. 2018, 6, 7951–7959.
- 11Z. Cao, M. Dierks, M. T. Clough, I. B. Daltro de Castro, R. Rinaldi, Joule 2018, 2, 1118–1133.
- 12M. V. Galkin, J. S. M. Samec, ChemSusChem 2016, 9, 1544–1558.
- 13H. Luo, I. M. Klein, Y. Jiang, H. Zhu, B. Liu, H. I. Kenttämaa, M. M. Abu-Omar, ACS Sustainable Chem. Eng. 2016, 4, 2316–2322.
- 14X. Ouyang, X. Huang, J. Zhu, M. D. Boot, E. J. M. Hensen, ACS Sustainable Chem. Eng. 2019, 7, 13764–13773.
- 15S. Rautiainen, D. Di Francesco, S. N. Katea, G. Westin, D. N. Tungasmita, J. S. M. Samec, ChemSusChem 2019, 12, 404–408.
- 16T. Renders, G. Van den Bossche, T. Vangeel, K. Van Aelst, B. Sels, Curr. Opin. Biotechnol. 2019, 56, 193–201.
- 17Z. Sun, G. Bottari, A. Afanasenko, M. C. A. Stuart, P. J. Deuss, B. Fridrich, K. Barta, Nat. Catal. 2018, 1, 82–92.
- 18T. Vangeel, T. Renders, K. Van Aelst, E. Cooreman, S. Van Den Bosch, G. Van Den Bossche, S. F. Koelewijn, C. M. Courtin, B. F. Sels, Green Chem. 2019, 21, 5841–5851.
- 19K. Zhang, H. Li, L. P. Xiao, B. Wang, R. C. Sun, G. Song, Bioresour. Technol. 2019, 285, 121335.
- 20P. J. Deuss, M. Scott, F. Tran, N. J. Westwood, J. G. De Vries, K. Barta, J. Am. Chem. Soc. 2015, 137, 7456–7467.
- 21P. J. Deuss, C. W. Lahive, C. S. Lancefield, N. J. Westwood, P. C. J. Kamer, K. Barta, J. G. de Vries, ChemSusChem 2016, 9, 2974–2981.
- 22C. W. Lahive, P. J. Deuss, C. S. Lancefield, Z. Sun, D. B. Cordes, C. M. Young, F. Tran, A. M. Z. Slawin, J. G. De Vries, P. C. J. Kamer, N. J. Westwood, K. Barta, J. Am. Chem. Soc. 2016, 138, 8900–8911.
- 23M. Kogo, R. Sakai, K. Saito, T. Watanabe, A. Kaiho, Green Chem. 2015, 17, 2780–2783.
- 24A. Kaiho, D. Mazzarella, M. Satake, M. Kogo, R. Sakai, T. Watanabe, Green Chem. 2016, 18, 6526–6535.
- 25X. Huang, X. Ouyang, B. M. S. Hendriks, O. M. M. Gonzalez, J. Zhu, T. I. Korányi, M. D. Boot, E. J. M. Hensen, Faraday Discuss. 2017, 202, 141–156.
- 26C. M. Alder, J. D. Hayler, R. K. Henderson, A. M. Redman, L. Shukla, L. E. Shuster, H. F. Sneddon, Green Chem. 2016, 18, 3879–3890.
- 27E. Jasiukaityte-Grojzdek, M. Kunaver, C. Crestini, J. Wood Chem. Technol. 2012, 32, 342–360.
- 28S. Kubo, T. Yamada, K. Hashida, H. Ono, Chem. Lett. 2007, 36, 502–503.
- 29P. R. Tundo, M. Musolino, F. Arico′, Front. Chem. 2019, 7, 300.
- 30M. Selva, A. Perosa, D. Rodríguez-Padrón, R. Luque, ACS Sustainable Chem. Eng. 2019, 7, 6471–6479.
- 31B. Schäffner, F. Schaffner, S. P. Verevkin, A. Börner, Chem. Rev. 2010, 110, 4554–4581.
- 32Z. Zhang, I. M. O'Hara, D. W. Rackemann, W. O. S. Doherty, Green Chem. 2013, 15, 255–264.
- 33Z. Zhang, D. W. Rackemann, W. O. S. Doherty, I. M. O'Hara, Biotechnol. Biofuels 2013, 6, 153.
- 34Q. Wang, K. Chen, J. Li, G. Yang, S. Liu, J. Xu, BioResources 2011, 6, 3034–3043.
- 35M. A. Mellmer, C. Sener, J. M. R. Gallo, J. S. Luterbacher, D. M. Alonso, J. A. Dumesic, Angew. Chem. Int. Ed. 2014, 53, 11872–11875; Angew. Chem. 2014, 126, 12066–12069.
- 36Y. Ni, Q. Hu, J. Appl. Polym. Sci. 1995, 57, 1441–1446.
- 37J. Quesada-Medina, F. J. López-Cremades, P. Olivares-Carrillo, Bioresour. Technol. 2010, 101, 8252–8260.
- 38J. H. Hildebrand, R. L. Scott, The Solubility of Nonelectrolytes, Reinhold Pub. Corp., New York, 1950.
- 39 Physical Properties of Polymers Handbook (Ed.: ), Springer, New York, 2007.
- 40N. Giummarella, C. Lindgren, M. E. Lindström, G. Henriksson, BioResources 2016, 11, 3494–3510.
- 41A. F. M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, Routledge, 2017, p. 55.
- 42A. F. M. Barton, Handbook of Poylmer-Liquid Interaction Parameters and Solubility Parameters, Routledge, 2018, p. 572.
- 43H. Q. Lê, A. Zaitseva, J.-P. Pokki, M. Ståhl, V. Alopaeus, H. Sixta, ChemSusChem 2016, 9, 2939–2947.
- 44R. L. Feller, N. Stolow, E. H. Jones, On Picture Varnishes and Their Solvents, Press Of Case Western Reserve University, Cleveland, 1971.
- 45M. A. Mellmer, C. Sanpitakseree, B. Demir, P. Bai, K. Ma, M. Neurock, J. A. Dumesic, Nat. Catal. 2018, 1, 199–207.
- 46T. Yamada, H. Ono, Bioresour. Technol. 1999, 70, 61–67.
- 47K. Zhang, Z. Pei, D. Wang, Bioresour. Technol. 2016, 199, 21–33.
- 48M. V. Galkin, A. T. Smit, E. Subbotina, K. A. Artemenko, J. Bergquist, W. J. J. Huijgen, J. S. M. Samec, ChemSusChem 2016, 9, 3280–3287.
- 49M. V. Galkin, J. S. M. Samec, ChemSusChem 2014, 7, 2154–2158.
- 50K. M. Torr, D. J. van de Pas, E. Cazeils, I. D. Suckling, Bioresour. Technol. 2011, 102, 7608–7611.
- 51F. Lu, J. Ralph, J. Agric. Food Chem. 1997, 45, 4655–4660.
- 52D. M. Miles-Barrett, A. R. Neal, C. Hand, J. R. D. Montgomery, I. Panovic, O. S. Ojo, C. S. Lancefield, D. B. Cordes, A. M. Z. Slawin, T. Lebl, N. J. Westwood, Org. Biomol. Chem. 2016, 14, 10023–10030.
- 53I. Panovic, C. S. Lancefield, D. Phillips, M. J. Gronnow, N. J. Westwood, ChemSusChem 2019, 12, 542–548.
- 54A. Smit, W. Huijgen, Green Chem. 2017, 19, 5505–5514.
- 55S. Jin, A. J. Hunt, J. H. Clark, C. R. McElroy, Green Chem. 2016, 18, 5839–5844.
- 56W. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang, P. Chen, Cellulose 2011, 18, 433–442.
- 57H. Yang, X. Zhang, H. Luo, B. Liu, T. M. Shiga, X. Li, J. I. Kim, P. Rubinelli, J. C. Overton, V. Subramanyam, B. R. Cooper, H. Mo, M. M. Abu-Omar, C. Chapple, B. S. Donohoe, L. Makowski, N. S. Mosier, M. C. McCann, N. C. Carpita, R. Meilan, Biotechnol. Biofuels 2019, 12, 171.
- 58W. Lan, M. T. Amiri, C. M. Hunston, J. S. Luterbacher, Angew. Chem. Int. Ed. 2018, 57, 1356–1360; Angew. Chem. 2018, 130, 1370–1374.
- 59P. V. Balaji, S. Chandrasekaran, Eur. J. Org. Chem. 2016, 2547–2554.