Fused Tetrathiafulvalene and Benzoquinone Triads: Organic Positive-Electrode Materials Based on a Dual Redox System
Corresponding Author
Prof. Dr. Yohji Misaki
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorShigenobu Noda
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Minami Kato
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorTomokazu Yamauchi
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorToko Oshima
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Aya Yoshimura
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Takashi Shirahata
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Masaru Yao
Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yohji Misaki
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorShigenobu Noda
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Minami Kato
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorTomokazu Yamauchi
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorToko Oshima
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Aya Yoshimura
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Takashi Shirahata
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Power Generation and Storage Materials, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577 Japan
Research Unit for Development of Organic Superconductors, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
Search for more papers by this authorDr. Masaru Yao
Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Search for more papers by this authorGraphical Abstract
Accentuate the positive: Fused donor–acceptor triads composed of two tetrathiafulvalenes and benzoquinone or naphthoquinone were synthesized. Positive electrodes incorporating the unsubstituted components and their methylthio derivatives had discharge capacities of 266–299 mAh g−1, which were attributed to the formation of both reduced and oxidized states from −2 to +4. Several cells exhibited high energy densities in excess of 800 mWh g-1.
Abstract
Fused donor–acceptor triads composed of two tetrathiafulvalenes (TTFs) and benzoquinone (BQ; 1) or naphthoquinone (NQ; 2) were successfully synthesized. X-ray structure analysis of the bis(n-butylthio) derivative revealed that the molecules are stacked in a head-to-tail manner. The bis(n-hexylthio)-1 exhibited six-pairs of one-electron transfer waves in the cyclic voltammogram, corresponding to the formation of both reduction and oxidation states from −2 to +4. The unsubstituted and bis(methylthio) derivatives of 1 and 2 were active materials in positive electrodes for rechargeable batteries, several of which displayed energy densities exceeding 800 mWh g−1. The bis(methylthio)-2 also functions as a positive electrode material for a rechargeable sodium-ion battery.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc202000178-sup-0001-misc_information.pdf4.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652–657.
- 2Y. Misaki in Functional Materials: Advances and Applications in Energy Storage and Conversion (Ed.: ), Pan Stanford Publishing, Singapore, 2019, pp. 205–252.
- 3
- 3aM. Yao, H. Senoh, S. Yamazaki, Z. Siroma, T. Sakai, K. Yasuda, J. Power Sources 2010, 195, 8336–8340;
- 3bM. Yao, S. Yamazaki, H. Senoh, T. Sakai, T. Kiyobayashi, J. Mater. Sci. Eng. B 2012, 177, 483–487;
- 3cM. Yao, T. Numoto, M. Araki, H. Ando, H. T. Takeshita, T. Kiyobayashi, Energy Procedia 2014, 56, 228–236.
- 4T. Yokoji, Y. Kameyama, N. Maruyama, H. Matsubara, J. Mater. Chem. A 2016, 4, 5457–19354.
- 5S. Gottis, A.-L. Barrès, F. Dolhem, P. Poizot, ACS Appl. Mater. Interfaces 2014, 6, 10870–10876.
- 6A. Iordache, V. Maurel, J.-M. Mouesca, J. Pécaut, L. Dubois, T. Gutel, J. Power Sources 2014, 267, 553–559.
- 7T. Matsunaga, T. Kubota, T. Sugimoto, M. Satoh, Chem. Lett. 2011, 40, 750–752.
- 8M. Yao, M. Araki, H. Senoh, S. Yamazaki, T. Sakai, K. Yasuda, Chem. Lett. 2010, 39, 950–952.
- 9W. Walker, S. Grugeon, O. Mentre, S. Laruelle, J.-M. Tarascon, F. Wudl, J. Am. Chem. Soc. 2010, 132, 6517–6523.
- 10
- 10aY. Morita, S. Nishida, T. Murata, M. Moriguchi, A. Ueda, M. Satoh, K. Arifuku, K. Sato, T. Takui, Nat. Mater. 2011, 10, 947–950;
- 10bS. Nishida, Y. Yamamoto, T. Takui, Y. Morita, ChemSusChem 2013, 6, 794–797.
- 11K. Oyaizu, T. Sukegawa, H. Nishide, Chem. Lett. 2011, 40, 184–185.
- 12Y. Imada, H. Nakano, K. Furukawa, R. Kishi, M. Nakano, H. Maruyama, M. Nakamoto, A. Sekiguchi, M. Ogawa, T. Ohta, Y. Yamamoto, J. Am. Chem. Soc. 2016, 138, 479–482.
- 13S. Osumi, S. Saito, C. Dou, K. Matsuo, K. Kume, H. Yoshikawa, K. Awaga, S. Yamaguchi, Chem. Sci. 2016, 7, 219–227.
- 14J. Y. Shin, T. Yamada, H. Yoshikawa, K. Awaga, H. Shinokubo, Angew. Chem. Int. Ed. 2014, 53, 3096–3101; Angew. Chem. 2014, 126, 3160–3165.
- 15Y. Inatomi, N. Hojo, T. Yamamoto, M. Shimada, S. Watanabe, 213th ECS Meeting, Phoenix, AZ, 2008, Abstract #167.
- 16
- 16aK. Oyaizu, T. Suga, K. Yoshimura, H. Nishide, Macromolecules 2008, 41, 6646–6652;
- 16bK. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, E. Hasegawa, Chem. Phys. Lett. 2002, 359, 351–354.
- 17
- 17aT. Nokami, T. Matsuo, Y. Inatomi, N. Hojo, T. Tsukagoshi, H. Yoshizawa, A. Shimizu, H. Kuramoto, K. Komae, H. Tsuyama, J. Yoshida, J. Am. Chem. Soc. 2012, 134, 19694–19700;
- 17bA. Shimizu, H. Kuramoto, Y. Tsujii, T. Nokami, Y. Inatomi, N. Hojo, H. Suzuki, J. Yoshida, J. Power Sources 2014, 260, 211–217.
- 18
- 18aY. Inatomi, N. Hojo, T. Yamamoto, S. Watanabe, Y. Misaki, ChemPlusChem 2012, 77, 973–976;
- 18bM. Kato, D. Ogi, M. Yao, Y. Misaki, Chem. Lett. 2013, 42, 1556–1558;
- 18cM. Kato, K. Senoo, M. Yao, Y. Misaki, J. Mater. Chem. A 2014, 2, 6747–6754;
- 18dS. Iwamoto, Y. Inatomi, D. Ogi, S. Shibayama, Y. Murakami, M. Kato, K. Takahashi, K. Tanaka, N. Hojo, Y. Misaki, Beilstein J. Org. Chem. 2015, 11, 1136–1147;
- 18eT. Yamauchi, Y. Shibata, T. Aki, A. Yoshimura, M. Yao, Y. Misaki, Chem. Lett. 2018, 47, 1176–1179;
- 18fD. Ogi, Y. Fujita, M. Kato, T. Yamauchi, T. Shirahata, M. Yao, Y. Misaki, Eur. J. Org. Chem. 2019, 2725–2728;
- 18gT. Yamauchi, M. Kato, T. Shirahata, M. Yao, Y. Misaki, Chem. Lett. 2019, 48, 1507–1510.
- 19
- 19aY. Misaki, Sci. Technol. Adv. Mater. 2009, 10, 024301;
- 19bY. Misaki in TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene (Eds.: ), Kodansha-Springer, Tokyo, 2004, pp. 227–257.
10.1007/978-3-662-10630-3_10 Google Scholar
- 20
- 20aM. Iyoda, M. Hasegawa, Y. Miyake, Chem. Rev. 2004, 104, 5085–5113;
- 20bK. Takimiya, T. Otsubo in TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene (Eds.: ), Kodansha-Springer, Tokyo, 2004, pp. 205–226;
10.1007/978-3-662-10630-3_9 Google Scholar
- 20cJ. L. Segura, N. Martín, Angew. Chem. Int. Ed. 2001, 40, 1372–1409;
10.1002/1521-3773(20010417)40:8<1372::AID-ANIE1372>3.0.CO;2-I CASPubMedWeb of Science®Google ScholarAngew. Chem. 2001, 113, 1416–1455;
- 20dD. Canevet, M. Sallé, G. Zhang, D. Zhu, Chem. Commun. 2009, 2245–2269.
- 21Y. Misaki, T. Matsui, K. Kawakami, H. Nishikwa, T. Yamabe, M. Shiro, Chem. Lett. 1993, 22, 1337–1340.
- 22Y. Misaki, T. Matsui, K. Kawakami, N. Higuchi, H. Nishikwa, T. Yamabe, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1996, 284, 337–344.
- 23Reviews on TTF-acceptors;
- 23aJ. J. Bergkamp, S. Decurtins, S.-X. Liu, Chem. Soc. Rev. 2015, 44, 863–874;
- 23bF. Pop, N. Avarvari, Chem. Commun. 2016, 52, 7906–7927.
- 24Preliminary communication; M. Kato, S. Noda, T. Kiyobayashi, M. Yao, Y. Misaki, Chem. Lett. 2017, 46, 368–370.
- 25Y. Misaki, H. Nishikawa, K. Kawakami, S. Koyanagi, T. Yamabe, M. Shiro, Chem. Lett. 1992, 21, 2321–2324.
- 26H. Nishikawa, S. Kawauchi, Y. Misaki, T. Yamabe, Chem. Lett. 1996, 25, 43–44.
- 27
- 27aF. Dumur, N. Gautier, N. Gallego-Planas, Y. Sahin, E. Levillain, N. Mercier, P. Hudhomme, M. Masino, A. Girlando, V. Lloveras, J. Vidal-Gancedo, J. Veciana, C. Rovira, J. Org. Chem. 2004, 69, 2164–2177;
- 27bD. Sun, M. Krawiec, W. H. Watson, J. Chem. Crystallogr. 1997, 27, 515–526.
- 28Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 29Crystal data of 1 c: triclinic; P
(#2); a=7.8150(3), b=9.9708(4), c=18.2847(7) Å; α=101.807(3), β=93.603(3), γ=108.424(3)°; V=1310.62(9) Å3; R1=0.0455; wR2=0.0876 for observed 4016 reflections (I>2σ(I)); GOF=1.019. CCDC 1978661 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
- 30A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
- 31
- 31aM. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902–3909;
- 31bM. J. S. Dewar, Y.-C. Yuan, Inorg. Chem. 1990, 29, 3881–3890;
- 31cT. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, H. Inokuchi, Bull. Chem. Soc. Jpn. 1984, 57, 627–633.
- 32
- 32aT. Shirahata in Functional Materials: Advances and Applications in Energy Storage and Conversion (Ed.: ), Pan Stanford Publishing, Singapore, 2019, pp. 253–323;
- 32bS. Kimura, H. Kurai, T. Mori, Tetrahedron 2002, 58, 1119–1124;
- 32cM. Ashizawa, S. Kimura, T. Mori, Y. Misaki, K. Tanaka, Synth. Met. 2004, 141, 307–313.
- 33M. Yao, K. Kuratani, T. Kojima, N. Takeichi, H. Senoh, T. Kiyobayashi, Sci. Rep. 2014, 4, 03650.
- 34M. Kato, H. Sano, T. Kiyobayashi, N. Takeichi, M. Yao, MRS Commun. 2019, 9, 979–984.