Unlocking the Potential of Substrate-Directed CO2 Activation and Conversion: Pushing the Boundaries of Catalytic Cyclic Carbonate and Carbamate Formation
Dr. Bart Limburg
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorÀlex Cristòfol
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorDr. Francesco Della Monica
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Prof. Arjan W. Kleij
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorDr. Bart Limburg
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorÀlex Cristòfol
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorDr. Francesco Della Monica
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Prof. Arjan W. Kleij
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorGraphical Abstract
Who's in control? Substrate-assisted nonreductive carbon dioxide conversion is a recently emerged concept that has significantly pushed the existing boundaries of catalytic formation of CO2-based heterocycles. The key mechanistic principles together with the new synthetic opportunities that have arisen from this approach are delineated, and areas with new potential and future developments are identified.
Abstract
The unparalleled potential of substrate-induced reactivity modes in the catalytic conversion of carbon dioxide and alcohol or amine functionalized epoxides is discussed in relation to more conventional epoxide/CO2 coupling strategies. This conceptually new approach allows for a substantial extension of the substitution degree and functionality of cyclic carbonate/carbamate products, which are predominant products in the area of nonreductive CO2 transformations. Apart from the creation of an advanced library of CO2-based heterocyclic products and intermediates, also the underlying mechanistic reasons for this novel reactivity profile are debated with a prominent role for the design and structure of the involved catalysts.
Conflict of interest
The authors declare no conflict of interest.
References
- 1For selected recent reviews on catalytic CO2 conversion:
- 1aS. Wang, C. Xi, Chem. Soc. Rev. 2019, 48, 382–404;
- 1bY.-Y. Gui, W.-J. Zhou, J.-H. Ye, D.-G. Yu, ChemSusChem 2017, 10, 1337–1340;
- 1cA. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948–15982;
Angew. Chem. 2018, 130, 16178–16214;
10.1002/ange.201803186 Google Scholar
- 1dC. S. Yeung, Angew. Chem. Int. Ed. 2019, 58, 5492–5502;
Angew. Chem. 2019, 131, 5546–5556;
10.1002/ange.201806285 Google Scholar
- 1eJ. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55, 7296–7343;
Angew. Chem. 2016, 128, 7416–7467;
10.1002/ange.201507458 Google Scholar
- 1fH. Seo, L. V. Nguyen, T. F. Jamison, Adv. Synth. Catal. 2019, 361, 247–264;
- 1gB. Yu, L.-N. He, ChemSusChem 2015, 8, 52–62.
- 2
- 2aT. Sakakura, K. Kohno, Chem. Commun. 2009, 1312–1330;
- 2bA.-A. G. Shaikh, S. Sivaram, Chem. Rev. 1996, 96, 951–976;
- 2cT. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365–2387.
- 3
- 3aS. A. Hauser, M. Cokoja, F. E. Kühn, Catal. Sci. Technol. 2013, 3, 552–561;
- 3bN. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 2005, 249, 1944–1956;
- 3cC. Wang, H. Yamamoto, Chem. Asian J. 2015, 10, 2056–2068;
- 3dY. Zhu, Q. Wang, R. G. Cornwall, Y. Shi, Chem. Rev. 2014, 114, 8199–8256;
- 3eB. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457–2474.
- 4For recent reviews:
- 4aF. Della Monica, A. Buonerba, C. Capacchione, Adv. Synth. Catal. 2019, 361, 265–282;
- 4bR. R. Shaikh, S. Pornpraprom, V. D′Elia, ACS Catal. 2018, 8, 419–450;
- 4cM. Alves, B. Grignard, R. Mereau, C. Jerome, T. Tassaing, C. Detrembleur, Catal. Sci. Technol. 2017, 7, 2651–2684;
- 4dJ. W. Comerford, I. D. V. Ingram, M. North, X. Wu, Green Chem. 2015, 17, 1966–1987;
- 4eB. Yu, B. Zou, C.-W. Hu, J. CO2 Util. 2018, 26, 314–322;
- 4fA. J. Kamphuis, F. Picchioni, P. P. Pescarmona, Green Chem. 2019, 21, 406–448.
- 5Notable examples of low pressure/temperature catalytic processes:
- 5aW. Clegg, R. W. Harrington, M. North, R. Pasquale, Chem. Eur. J. 2010, 16, 6828–6843;
- 5bA. Decortes, A. W. Kleij, ChemCatChem 2011, 3, 831–834;
- 5cY. Chen, P. Xu, M. Arai, J. Sun, Adv. Synth. Catal. 2019, 361, 335–344;
- 5dJ. Hu, J. Ma, Q. Zhu, Q. Qian, H. Han, Q. Mei, B. Han, Green Chem. 2016, 18, 382–385;
- 5eC. Martin, G. Fiorani, A. W. Kleij, ACS Catal. 2015, 5, 1353–1370;
- 5fH. Buttner, L. Longwitz, J. Steinbauer, C. Wulf, T. Werner, Top. Curr. Chem. 2017, 375, 50–106;
- 5gF. Della Monica, B. Maity, T. Pehl, A. Buonerba, A. De Nisi, M. Monari, A. Grassi, B. Rieger, L. Cavallo, C. Capacchione, ACS Catal. 2018, 8, 6882–6893.
- 6Selected examples of terpene based CCs:
- 6aG. Fiorani, M. Stuck, C. Martín, M. Martínez-Belmonte, E. Martin, E. C. Escudero-Adán, A. W. Kleij, ChemSusChem 2016, 9, 1304–1311;
- 6bB. Schäffner, M. Blug, D. Kruse, M. Polyakov, A. Köckritz, A. Martin, P. Rajagopalan, U. Bentrup, A. Brückner, S. Jung, D. Agar, B. Rüngeler, A. Pfennig, K. Müller, W. Arlt, B. Woldt, M. Graß, S. Buchholz, ChemSusChem 2014, 7, 1133–1139;
- 6cJ. Martínez, J. Fernández-Baeza, L. F. Sánchez-Barba, J. A. Castro-Osma, A. Lara-Sánchez, A. Otero, ChemSusChem 2017, 10, 2886–2890;
- 6dF. de la Cruz-Martínez, M. Martínez de Sarasa Buchaca, J. Martínez, J. Fernández-Baeza, L. F. Sánchez-Barba, A. Rodríguez-Diéguez, J. A. Castro-Osma, A. Lara-Sánchez, ACS Sustainable Chem. Eng. 2019, 7, 20126–20138;
- 6eL. Longwitz, J. Steinbauer, A. Spannenberg, T. Werner, ACS Catal. 2018, 8, 665–672.
- 7Selected examples of fatty acid-based CCs:
- 7aM. Alves, B. Grignard, S. Gennen, C. Detrembleur, C. Jerome, T. Tassaing, RSC Adv. 2015, 5, 53629–53636;
- 7bJ. Langanke, L. Greiner, W. Leitner, Green Chem. 2013, 15, 1173–1182;
- 7cH. Büttner, J. Steinbauer, C. Wulf, M. Dindaroglu, H.-G. Schmalz, T. Werner, ChemSusChem 2017, 10, 1076–1079;
- 7dN. Tenhumberg, H. Büttner, B. Schäffner, D. Kruse, M. Blumenstein, T. Werner, Green Chem. 2016, 18, 3775–3788;
- 7eL. Peña-Carrodeguas, À. Cristòfol, J. M. Fraile, J. A. Mayoral, V. Dorado-Horrillo, C. I. Herrerías, A. W. Kleij, Green Chem. 2017, 19, 3535–3541.
- 8Selected examples of sugar-based CCs:
- 8aD. Patia, X.-S. Feng, N. Hadjichristidis, Y. Gnanou, J. CO2 Util. 2018, 24, 564–571;
- 8bG. L. Gregory, G. Kociok-Köhn, A. Buchard, Polym. Chem. 2017, 8, 2093–2104;
- 8cG. L. Gregory, E. M. López-Vidal, A. Buchard, Chem. Commun. 2017, 53, 2198–2217;
- 8dP.-K. Dannecker, M. A. R. Meier, Sci. Rep. 2019, 9, 9858.
- 9For some leading references:
- 9aD. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers J. Am. Chem. Soc. 2005, 127, 14026–14038;
- 9bD. J. Darensbourg, W.-C. Chung, S. J. Wilson, ACS Catal. 2013, 3, 3050–3057;
- 9cM. R. Kember, P. D. Knight, P. T. R. Reung, C. K. Williams, Angew. Chem. Int. Ed. 2009, 48, 931–933;
Angew. Chem. 2009, 121, 949–951.
10.1002/ange.200803896 Google Scholar
- 10Limited success has been met in the coupling of tri-substituted epoxides, see for instance:
- 10aV. Laserna, E. Martin, E. C. Escudero-Adán, A. W. Kleij, ACS Catal. 2017, 7, 5478–5482;
- 10bC. Maeda, J. Shimonishi, R. Miyazaki, J.-Y. Hasegawa, T. Ema, Chem. Eur. J. 2016, 22, 6556–6563;
- 10cM. Bähr, A. Bitto, R. Mülhaupt, Green Chem. 2012, 14, 1447–1454.
- 11For instructive contributions on the most common steps in CC formation from epoxides and CO2 see:
- 11aM. North, R. Pasquale, Angew. Chem. Int. Ed. 2009, 48, 2946–2948;
Angew. Chem. 2009, 121, 2990–2992;
10.1002/ange.200805451 Google Scholar
- 11bF. Castro-Gómez, G. Salassa, A. W. Kleij, C. Bo, Chem. Eur. J. 2013, 19, 6289–6298; For a recent review on multiple mechanistic pathways in CC formation:
- 11cF. Della Monica, A. W. Kleij, Catal. Sci. Technol. 2020, 10, 3483–3501.
- 12For some original examples:
- 12aH. L. Parker, J. Sherwood, A. J. Hunt, J. H. Clark, ACS Sustainable Chem. Eng. 2014, 2, 1739–1742;
- 12bC. Beattie, M. North, P. Villuendas, Molecules 2011, 16, 3420–3432;
- 12cM. North, P. Villuendas, Org. Lett. 2010, 12, 2378–2381;
- 12dB. Schäffner, F. Schäffner, S. P Verevkin, A. Börner, Chem. Rev. 2010, 110, 4554–4581.
- 13
- 13aD. J. Darensbourg, A. I. Moncada, S.-H. Wei, Macromolecules 2011, 44, 2568–2576;
- 13bP. Brignou, J.-F. Carpentier, S. M. Guillaume, Macromolecules 2011, 44, 5127–5135;
- 13cW. Guerin, M. Helou, M. Slawinski, J.-M. Brusson, S. M. Guillaume, J.-F. Carpentier, Polym. Chem. 2013, 4, 3686–3693. See also:
- 13dB. Grignard, S. Gennen, C. Jérôme, A. W. Kleij, C. Detrembleur, Chem. Soc. Rev. 2019, 48, 4466–4514. For examples of the use of five-membered CCs in polymerization processes see:
- 13eL. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, H. Cramail, Chem. Rev. 2015, 115, 12407–12439;
- 13fS. Gennen, B. Grignard, T. Tassaing, C. Jérôme, C. Detrembleur, Angew. Chem. Int. Ed. 2017, 56, 10394–10398; Angew. Chem. 2017, 129, 10530–10534.
- 14Carbonates and derivatives as electrolyte solvents:
- 14aB. Scrosati, J. Hassoun, Y. K. Sun, Energy Environ. Sci. 2011, 4, 3287–3295;
- 14bB. Carry, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 6257–6260;
Angew. Chem. 2016, 128, 6365–6368.
10.1002/ange.201602278 Google Scholar
- 15
- 15aW. Guo, J. E. Gómez, À. Cristòfol, J. Xie, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 13735–13747;
Angew. Chem. 2018, 130, 13928–13941;
10.1002/ange.201805009 Google Scholar
- 15bJ. Vaitla, Y. Guttormsen, J. K. Mannisto, A. Nova, T. Repo, A. Bayer, K. H. Hopmann, ACS Catal. 2017, 7, 7231–7244;
- 15cB. D. W. Allen, C. P. Lakeland, J. P. A. Harrity, Chem. Eur. J. 2017, 23, 13830–13857;
- 15dÀ. Cristòfol, C. Böhmer, A. W. Kleij, Chem. Eur. J. 2019, 25, 15055–15058.
- 16J. Rintjema, A. W. Kleij, Synthesis 2016, 48, 3863–3878.
- 17C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán, E. Martin, A. W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228–1231.
- 18J. Rintjema, W. Guo, E. Martin, E. C. Escudero-Adán, A. W. Kleij, Chem. Eur. J. 2015, 21, 10754–10762.
- 19J. Rintjema, R. Epping, G. Fiorani, E. Martín, E. C. Escudero-Adán, A. W. Kleij, Angew. Chem. Int. Ed. 2016, 55, 3972–3976;
Angew. Chem. 2016, 128, 4040–4044.
10.1002/ange.201511521 Google Scholar
- 20R. Huang, J. Rintjema, J. González-Fabra, E. Martín, E. C. Escudero-Adán, C. Bo, A. Urakawa, A. W. Kleij, Nat. Catal. 2019, 2, 62–70.
- 21T.-Q. Xu, D. J. Darensbourg, J. Am. Chem. Soc. 2011, 133, 15191–15199.
- 22C. Maquilón, B. Limburg, V. Laserna, D. Garay-Ruiz, J. González-Fabra, C. Bo, M. Martínez Belmonte, E. C. Escudero-Adán, A. W. Kleij, Organometallics 2020, 39, 1642–1651.
- 23S. Sopeña, M. Cozzolino, C. Maquilón, E. C. Escudero-Adán, M. Martínez Belmonte, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 11203–11207;
Angew. Chem. 2018, 130, 11373–11377.
10.1002/ange.201803967 Google Scholar
- 24G. B. Payne, J. Org. Chem. 1962, 27, 3819–3822.
- 25C. Qiao, A. Villar-Yanez, J. Sprachmann, B. Limburg, C. Bo, A. W. Kleij, Angew. Chem. Int. Ed. 2020, 59, 18446–18451;
Angew. Chem. 2020, 132, 18604–18609.
10.1002/ange.202007350 Google Scholar
- 26For the ROP of six-membered cyclic carbonates see:
- 26aH. Matsukizono, T. Endo, Polym. Chem. 2016, 54, 487–497;
- 26bD. J. Darensbourg, A. I. Moncada, S.-H. Wei, Macromolecules 2011, 44, 2568–2576;
- 26cG. L. Gregory, G. Kociok-Köhn, A. Buchard, Polym. Chem. 2017, 8, 2093–2104.
- 27F. Della Monica, A. Buonerba, A. Grassi, C. Capacchione, S. Milione ChemSusChem 2016, 9, 3457–3464.
- 28J. A. Castro-Osma, M. North, X. Wu, Chem. Eur. J. 2014, 20, 15005–15008.
- 29J. A. Castro-Osma, M. North, W. K. Offermans, W. Leitner, T. E. Müller, ChemSusChem 2016, 9, 791–794.
- 30M. Sengoden, M. North, A. C. Whitwood, ChemSusChem 2019, 12, 3296–3303.
- 31
- 31aS. Minakata, I. Sasaki, T. Ide, Angew. Chem. Int. Ed. 2010, 49, 1309–1311;
Angew. Chem. 2010, 122, 1331–1333;
10.1002/ange.200906352 Google Scholar
- 31bY. Takeda, S. Okumura, S. Tone, I. Sasaki, S. Minakata, Org. Lett. 2012, 14, 4874–4877.
- 32Z. Lai, R. Zhang, Q. Feng, J. Sun, Chem. Sci. 2020, 11, 9945–9949.
- 33See for instance:
- 33aD. J. Darensbourg, A. Horn, Jr., A. I. Moncada, Green Chem. 2010, 12, 1376–1379;
- 33bT. M. McGuire, E. M. López-Vidal, G. L. Gregory, A. Buchard, J. CO2 Util. 2018, 27, 283–288. See also Ref. 18.
- 34L. Houhua, C. Mazet, J. Am. Chem. Soc. 2015, 137, 10720–10727.