Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals
Prof. Jinhui Feng
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorProf. Qiaqing Wu
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dunming Zhu
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorProf. Yanhe Ma
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorProf. Jinhui Feng
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorProf. Qiaqing Wu
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dunming Zhu
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorProf. Yanhe Ma
National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308 P. R. China
Search for more papers by this authorGraphical Abstract
Biotransformation: Genetic and metabolic engineering generates highly efficient microbial strains for the production of key steroid intermediates from phytosterols as starting materials instead of sapogenins. Advances in synthetic biology will lead to microbial cell factories for the industrial production of steroids from simple carbon sources such as glucose. Biotransformation continuously enables innovations in the synthesis of steroidal active pharmaceutical ingredients for a greener steroidal pharmaceutical industry.
Abstract
Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous “Marker Degradation”. Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. V. Donova, in Microbial Steroids: Methods and Protocols (Eds.: J.-L. Barredo, I. Herráiz), Springer New York, New York, NY, 2017, pp. 1–13.
- 2https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster.
- 3M. V. Donova, O. V. Egorova, Appl. Microbiol. Biotechnol. 2012, 94, 1423–1447.
- 4A. Zhao, X. Zhang, Y. Li, Z. Wang, Y. Lv, J. Liu, M. A. Alam, W. Xiong, J. Xu, Biotechnol. Adv. 2021, 53, 107860.
- 5P. A. Lehmann, F. A. Bolivar, G. R. Quintero, J. Chem. Educ. 1973, 50, 195.
- 6
- 6aG. Rosenkranz, Steroids 1992, 57, 409–418;
- 6bG. Rosenkranz, O. Mancera, F. Sondheimer, C. Djerassi, J. Org. Chem. 1956, 21, 520–522.
- 7A. Poulos, J. W. Greiner, G. A. Fevig, Ind. Eng. Chem. 1961, 53, 949–962.
- 8
- 8aF. W. Heyl, A. P. Centolella, M. E. Herr, J. Am. Chem. Soc. 1947, 69, 1957–1961;
- 8bA. P. Centolella, F. W. Heyl, M. E. Herr, J. Am. Chem. Soc. 1948, 70, 2953–2954;
- 8cF. W. Heyl, M. E. Herr, J. Am. Chem. Soc. 1950, 72, 2617–2619.
- 9K. Kieslich, J. Basic Microbiol. 1985, 25, 461–474.
- 10G. Wix, K. G. Büki, E. Tömörkény, G. Ambrus, Steroids 1968, 11, 401–413.
- 11W. J. Marsheck, S. Kraychy, R. D. Muir, Appl. Microbiol. 1972, 23, 72–77.
- 12O. V. Egorova, S. A. Gulevskaya, I. F. Puntus, A. E. Filonov, M. V. Donova, J. Chem. Technol. Biotechnol. 2002, 77, 141–147.
- 13A. Malaviya, J. Gomes, Appl. Biochem. Biotechnol. 2009, 158, 374–386.
- 14Y. Lin, X. Song, J. Fu, J. Lin, Y. Qu, Bioresour. Technol. 2009, 100, 1864–1867.
- 15Y. Liu, G. Chen, F. Ge, W. Li, L. Zeng, W. Cao, World J. Microbiol. Biotechnol. 2011, 27, 759–765.
- 16P. N. Chaudhari, B. L. Chaudhari, S. B. Chincholkar, Biotechnol. Lett. 2010, 32, 695–699.
- 17S. Ahmad, P. K. Roy, A. W. Khan, S. K. Basu, B. N. Johri, World J. Microbiol. Biotechnol. 1991, 7, 557–561.
- 18M. G. Wovcha, F. J. Antosz, J. C. Knight, L. A. Kominek, T. R. Pyke, Biochim. Biophys. Acta, Lipids Lipid Metab. 1978, 531, 308–321.
- 19M. V. Donova, S. A. Gulevskaya, D. V. Dovbnya, I. F. Puntus, Appl. Microbiol. Biotechnol. 2005, 67, 671–678.
- 20L. Seidel, C. Hörhold, J. Basic Microbiol. 1992, 32, 49–55.
- 21B. Angelova, S. Mutafov, T. Avramova, I. Dimova, L. Boyadjieva, Process Biochem. 1996, 31, 179–184.
- 22L. Vasquez, J. Alarcon, H. Zunza, J. Becerra, M. Sílva, Bol. Soc. Chil. Quim. 2001, 46, 29–31.
- 23F. F. Hill, J. Schindler, R. Schmid, R. Wagner, W. Voelter, Eur. J. Appl. Microbiol. Biotechnol. 1982, 15, 25–32.
- 24T. Nakamatsu, T. Beppu, K. Arima, Agric. Biol. Chem. 1983, 47, 1449–1454.
- 25A. Miclo, P. Germain, G. Lefebvre, J. Basic Microbiol. 1986, 26, 225–230.
- 26M. Vidal, J. Becerra, M. Mondaca, M. Silva, Appl. Microbiol. Biotechnol. 2001, 57, 385–389.
- 27C. Perez, A. Falero, N. Llanes, B. R. Hung, M. E. Hervé, A. Palmero, E. Martí, J. Ind. Microbiol. Biotechnol. 2003, 30, 623–626.
- 28
- 28aN. Llanes, P. Fernandes, R. Léon, J. M. S. Cabral, H. M. Pinheiro, J. Mol. Catal. B 2001, 11, 523–530;
- 28bC.-Y. Lee, W.-H. Liu, Appl. Microbiol. Biotechnol. 1992, 36, 598–603.
- 29Z. Wang, F. Zhao, D. Chen, D. Li, Process Biochem. 2006, 41, 557–561.
- 30P. G. M. Hesselink, S. van Vliet, H. de Vries, B. Witholt, Enzyme Microb. Technol. 1989, 11, 398–404.
- 31J.-J. Yuan, Y.-X. Guan, S.-J. Yao, ACS Sustainable Chem. Eng. 2017, 5, 10702–10709.
- 32R. A. Mancilla, C. Little, A. Amoroso, Appl. Biochem. Biotechnol. 2018, 185, 494–506.
- 33L. Zhou, H. Li, Y. Xu, W. Liu, X. Zhang, J. Gong, Z. Xu, J. Shi, Process Biochem. 2019, 87, 89–94.
- 34Y.-G. Xu, Y.-X. Guan, H.-Q. Wang, S.-J. Yao, Appl. Biochem. Biotechnol. 2014, 174, 522–533.
- 35S. Martínez-Cámara, E. Bahíllo, J.-L. Barredo, M. Rodríguez-Sáiz, in Microbial Steroids: Methods and Protocols (Eds.: J.-L. Barredo, I. Herráiz), Springer New York, New York, NY, 2017, pp. 199–210.
- 36A. Cruz, P. Fernandes, J. M. S. Cabral, H. M. Pinheiro, J. Mol. Catal. B 2001, 11, 579–585.
- 37S. Flygare, P.-O. Larsson, Enzyme Microb. Technol. 1989, 11, 752–759.
- 38N. Phase, S. Patil, World J. Microbiol. Biotechnol. 1994, 10, 228–229.
- 39X. Wang, C. Hua, X. Xu, D. Wei, Appl. Biochem. Biotechnol. 2019, 188, 138–146.
- 40
- 40aA. Rodríguez-García, E. Fernández-Alegre, A. Morales, A. Sola-Landa, J. Lorraine, S. Macdonald, D. Dovbnya, M. C. M. Smith, M. Donova, C. Barreiro, J. Biotechnol. 2016, 224, 64–65;
- 40bH. Wang, S. Song, F. Peng, F. Yang, T. Chen, X. Li, X. Cheng, Y. He, Y. Huang, Z. Su, Microb. Cell Fact. 2020, 19, 187.
- 41W. Wei, F.-Q. Wang, S.-Y. Fan, D.-Z. Wei, Appl. Environ. Microbiol. 2010, 76, 4578–4582.
- 42B. Galán, I. Uhía, E. García-Fernández, I. Martínez, E. Bahíllo, J. L. de la Fuente, J. L. Barredo, L. Fernández-Cabezón, J. L. García, Microb. Biotechnol. 2017, 10, 138–150.
- 43M. Li, X. Li, J. Feng, R. Zhang, Q. Wu, D. Zhu, Y. Ma, Chin. J. Appl. Environ. Biol. 2020, 26, 739–746.
- 44K. Yao, L.-Q. Xu, F.-Q. Wang, D.-Z. Wei, Metab. Eng. 2014, 24, 181–191.
- 45L.-B. Xiong, H.-H. Liu, L.-Q. Xu, D.-Z. Wei, F.-Q. Wang, J. Agric. Food Chem. 2017, 65, 626–631.
- 46H. Sun, J. Yang, K. He, Y.-P. Wang, H. Song, Chem. Eng. Sci. 2021, 230, 116195.
- 47X. Li, T. Chen, F. Peng, S. Song, J. Yu, D. N. Sidoine, X. Cheng, Y. Huang, Y. He, Z. Su, Microb. Cell Fact. 2021, 20, 158.
- 48L.-Q. Xu, Y.-J. Liu, K. Yao, H.-H. Liu, X.-Y. Tao, F.-Q. Wang, D.-Z. Wei, Sci. Rep. 2016, 6, 21928.
- 49H. Chang, H. Zhang, L. Zhu, W. Zhang, S. You, W. Qi, J. Qian, R. Su, Z. He, Biochem. Eng. J. 2020, 164, 107789.
- 50L.-B. Xiong, H.-H. Liu, M. Zhao, Y.-J. Liu, L. Song, Z.-Y. Xie, Y.-X. Xu, F.-Q. Wang, D.-Z. Wei, Microb. Cell Fact. 2020, 19, 80.
- 51R. Zhang, X. Liu, Y. Wang, Y. Han, J. Sun, J. Shi, B. Zhang, Microb. Cell Fact. 2018, 17, 77.
- 52N. Liu, J. Feng, R. Zhang, X. Chen, X. Li, P. Yao, Q. Wu, Y. Ma, D. Zhu, Green Chem. 2019, 21, 4076–4083.
- 53R. Wiechert, in Analogue-based Drug Discovery (Eds.: J. Fischer, C. R. Ganellin), Wiley-VCH Verlag, Weinheim, 2006, pp. 395–400.
10.1002/3527608001.ch20 Google Scholar
- 54
- 54aO. Schmidt, K. Prezewowsky, G. Schulz, R. Wiechert, Chem. Ber. 1968, 101, 939–943;
- 54bR. Vardanyan, V. Hruby, in Synthesis of Best-Seller Drugs (Eds.: R. Vardanyan, V. Hruby), Academic Press, Boston, 2016, pp. 459–493.
10.1016/B978-0-12-411492-0.00027-4 Google Scholar
- 55H. Laurent, D. Bittler, H. Hofmeister, K. Nickisch, R. Nickolson, K. Petzoldt, R. Wiechert, J. Steroid Biochem. 1983, 19, 771–776.
- 56D. Bittler, H. Hofmeister, H. Laurent, K. Nickisch, R. Nickolson, K. Petzoldt, R. Wiechert, Angew. Chem. Int. Ed. 1982, 21, 696–697; Angew. Chem. 1982, 94, 718–719.
- 57K. Petzoldt, H. Laurent, R. Wiechert, Angew. Chem. Int. Ed. 1983, 22, 406–407; Angew. Chem. 1983, 95, 413–414.
- 58
- 58aA. Bowers, R. Villotti, J. A. Edwards, E. Denot, O. Halpern, J. Am. Chem. Soc. 1962, 84, 3204–3205;
- 58bT. B. Windholz, M. Windholz, Angew. Chem. Int. Ed. 1964, 3, 353–361; Angew. Chem. 1964, 76, 249–258;
- 58cY. Wang, W. Ju, H. Tian, W. Tian, J. Gui, J. Am. Chem. Soc. 2018, 140, 9413–9416.
- 59H. Renata, Q. Zhou, G. Dünstl, J. Felding, R. R. Merchant, C.-H. Yeh, P. S. Baran, J. Am. Chem. Soc. 2015, 137, 1330–1340.
- 60C. D. Sohl, F. P. Guengerich, J. Biol. Chem. 2010, 285, 17734–17743.
- 61T. Takahashi, Agric. Biol. Chem. 1964, 28, 38–47.
- 62
- 62aT. A. Clark, R. Chong, I. S. Maddox, Eur. J. Appl. Microbiol. Biotechnol. 1982, 14, 131–135;
- 62bT. A. Clark, R. Chong, I. S. Maddox, Appl. Microbiol. Biotechnol. 1985, 21, 132–134.
- 63J. Wang, Y. Zhang, H. Liu, Y. Shang, L. Zhou, P. Wei, W.-B. Yin, Z. Deng, X. Qu, Q. Zhou, Nat. Commun. 2019, 10, 3378.
- 64W. Lu, X. Chen, J. Feng, Y.-J. Bao, Y. Wang, Q. Wu, D. Zhu, M. A. Elliot, Appl. Environ. Microbiol. 2018, 84, e00503–00518.
- 65S. Kille, F. E. Zilly, J. P. Acevedo, M. T. Reetz, Nat. Chem. 2011, 3, 738–743.
- 66C. G. Acevedo-Rocha, C. G. Gamble, R. Lonsdale, A. Li, N. Nett, S. Hoebenreich, J. B. Lingnau, C. Wirtz, C. Fares, H. Hinrichs, A. Deege, A. J. Mulholland, Y. Nov, D. Leys, K. J. McLean, A. W. Munro, M. T. Reetz, ACS Catal. 2018, 8, 3395–3410.
- 67A. Li, C. G. Acevedo-Rocha, L. D′Amore, J. Chen, Y. Peng, M. Garcia-Borràs, C. Gao, J. Zhu, H. Rickerby, S. Osuna, J. Zhou, M. T. Reetz, Angew. Chem. Int. Ed. 2020, 59, 12499–12505;
Angew. Chem. 2020, 132, 12599–12605.
10.1002/ange.202003139 Google Scholar
- 68W. Chen, M. J. Fisher, A. Leung, Y. Cao, L. L. Wong, ACS Catal. 2020, 10, 8334–8343.
- 69
- 69aP. Bracco, H. J. Wijma, B. Nicolai, J. A. R. Buitrago, T. Klünemann, A. Vila, P. Schrepfer, W. Blankenfeldt, D. B. Janssen, A. Schallmey, ChemBioChem 2021, 22, 1099–1110;
- 69bP. Bracco, D. B. Janssen, A. Schallmey, Microb. Cell Fact. 2013, 12, 95.
- 70
- 70aH. Renata, J. Ind. Microbiol. Biotechnol. 2021, 48;
- 70bH. Pellissier, M. Santelli, Org. Prep. Proced. Int. 2001, 33, 1–58.
- 71A.-S. Chapelon, D. Moraléda, R. Rodriguez, C. Ollivier, M. Santelli, Tetrahedron 2007, 63, 11511–11616.
- 72Q. Gong, J. Wen, X. Zhang, Chem. Sci. 2019, 10, 6350–6353.
- 73
- 73aX. Chen, H. Zhang, M. A. Maria-Solano, W. Liu, J. Li, J. Feng, X. Liu, S. Osuna, R.-T. Guo, Q. Wu, D. Zhu, Y. Ma, Nature Catalysis 2019, 2, 931–941;
- 73bJ. Li, J. Feng, X. Chen, J. Gong, Y. Cui, H. Zhang, D. Bu, Q. Wu, D. Zhu, Org. Lett. 2020, 22, 3444–3448;
- 73cL. Zhu, Y. Cui, X. Chen, H. Zhang, J. Feng, Q. Wu, D. Zhu, Green Synth. Catal. 2021, 2, 320–323.
10.1016/j.gresc.2021.04.009 Google Scholar
- 74
- 74aK. Chen, C. Liu, L. Deng, G. Xu, Steroids 2010, 75, 513–516;
- 74bM. H. Zheng Xiuwen, Ding Kai, Chin. J. Org. Chem. 2018, 38, 464–470;
- 74cT. Iida, K. Omura, R. Sakiyama, M. Kodomari, Chem. Phys. Lipids 2014, 178, 45–51.
- 75A. Rohman, B. W. Dijkstra, Biotechnol. Adv. 2021, 49, 107751.
- 76S. Costa, F. Zappaterra, D. Summa, B. Semeraro, G. Fantin, Molecules 2020, 25, 2192.
- 77X. Wang, J. Feng, D. Zhang, Q. Wu, D. Zhu, Y. Ma, Appl. Microbiol. Biotechnol. 2017, 101, 6049–6060.
- 78M.-M. Chen, F.-Q. Wang, L.-C. Lin, K. Yao, D.-Z. Wei, Appl. Microbiol. Biotechnol. 2012, 96, 133–142.
- 79J. Manosroi, P. Sripalakit, A. Manosroi, Enzyme Microb. Technol. 2003, 33, 320–325.
- 80J. Tang, X. Liu, C. Zeng, H. Meng, M. Tian, C. Guo, J. Chem. Res. 2017, 41, 266–270.
- 81J. Tang, C. Zeng, L. Xie, J. Wang, M. Tian, C. Guo, Chem. Lett. 2018, 47, 110–112.
- 82C. Felpeto-Santero, B. Galán, J. L. García, Microb. Biotechnol. 2021, 14, 2514–2524.
- 83L. Fernández-Cabezón, B. Galán, J. L. García, Front. Microbiol. 2018, 9, article 958, doi: 10.3389/fmicb.2018.00958.
- 84C. Duport, R. Spagnoli, E. Degryse, D. Pompon, Nat. Biotechnol. 1998, 16, 186–189.
- 85F. M. Szczebara, C. Chandelier, C. Villeret, A. Masurel, S. Bourot, C. Duport, S. Blanchard, A. Groisillier, E. Testet, P. Costaglioli, G. Cauet, E. Degryse, D. Balbuena, J. Winter, T. Achstetter, R. Spagnoli, D. Pompon, B. Dumas, Nat. Biotechnol. 2003, 21, 143–149.
- 86
- 86aJ. Nielsen, J. D. Keasling, Cell 2016, 164, 1185–1197;
- 86bK. Alam, J. Hao, Y. Zhang, A. Li, Biotechnol. Adv. 2021, 49, 107759.