Green Chemistry, Biocatalysis, and the Chemical Industry of the Future
Corresponding Author
Prof. Roger A. Sheldon
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000 South Africa
Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ Delft, Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dean Brady
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000 South Africa
Search for more papers by this authorCorresponding Author
Prof. Roger A. Sheldon
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000 South Africa
Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ Delft, Netherlands
Search for more papers by this authorCorresponding Author
Prof. Dean Brady
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000 South Africa
Search for more papers by this authorGraphical Abstract
A way forward: The chemical industry is transitioning to a biorefinery network using biocatalysis, autotrophic and heterotrophic fermentation, electrobiocatalysis, and photobiocatalysis to retain carbon in a circular economy.
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Conflict of interest
The authors declare no conflict of interest.
References
- 1C. Caldeira, A. Vlysidis, G. Fiore, V. De Laurentiis, G. Vignali, S. Sala, Bioresour. Technol. 2020, 312, 123575.
- 2D. J. C. Mackay, Sustainable Energy-Without the Hot Air, 2008, Cambridge University Press ISBN 978-0-9544529-3–3.
- 3B. W. Brook, A. Alonso, D. A. Menely, J. Misak, T. Blees, J. B. van Erp, Sust. Mat. Technol. 2014, 1–2, 8–16.
10.1016/j.susmat.2014.11.001 Google Scholar
- 4V. Knapp, M. Matijevic, D. Pevec, B. Cmobrnja, D. Lale, J. Energy Power Eng. 2016, 10, 651–659.
- 5J. Blondelle, European Commission, European framework for Power-to-X DG Research and Innovation. https://ec.europa.eu/jrc/sites/default/files/Blondelle%20DG%20RTD.pdf.
- 6T. Haas, R. Krause, R. Weber, M. Demler, G. Schmid, Nat. Catal. 2018, 32, 32–39.
- 7Z. H. Liu, K. Wang, Y. Chen, T. W. Tan, J. Nielsen, Nat. Catal. 2020, 3, 274–288.
- 8S. Cestellos-Blanco, J. M. Kim, N. G. Watanabe, R. R. Chan, P. Yang, iScience 2021, 24, 102952.
- 9B. Liang, Y. Zhao, J. Yang, Front. Microbiol. 2020, 11, 592631.
- 10The Autotrophic Biorefinery: Raw Materials from Biotechnology (Eds.: R. Kourist, S. Schmidt) Eds, 2021. De Gruyter, ISBN 9783110549881.
- 11R. A. Sheldon, J. M. Woodley, Chem. Rev. 2018, 118, 801–838.
- 12A. Bruggink, R. Schoevaart, T. Kieboom, Org. Process Res. Dev. 2003, 7, 622–640.
- 13P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, Acc. Chem. Res. 2008, 41, 40–49.
- 14M. L. Metzker, Nat. Rev. Genet. 2010, 11, 31–45.
- 15H. Renata, Z. J. Wang, F. H. Arnold, Angew. Chem. Int. Ed. 2015, 54, 3351–3367.
- 16Z. Sun, Y. Witmark, J. E. Bäckvall, M. T. Reetz, Chem. Eur. J. 2016, 22, 5046–5054.
- 17G. W. Huisman, J. Lalonde, in Biocatalysis in the Pharmaceutical and Biotechnology Industries (Ed.: R. N. Patel) 2006, 717–742. CRC Press. ISBN 9780367446284.
- 18R. A. Sheldon, D. Brady, ACS Sustainable Chem. Eng. 2021, 9, 8032–8052.
- 19J.-P. Lange, Nat. Catal. 2021, 4, 186–192.
- 20R. A. Sheldon, A. Basso, D. Brady, Chem. Soc. Rev. 2021, 50, 5850–5862.
- 21R. Schlögl, Green Chem. 2021, 23, 1584–1593.
- 22F. J. De Sisternes, J. D. Jenkins, A. Botterud, Appl. Energy 2016, 175, 368–379.
- 23R. Schlögl, Angew. Chem. Int. Ed. 2019, 58, 343–348.
- 24G. A. Olah, A. Goeppert, G. K. S. Prakash, Angew. Chem. Int. Ed. 2005, 44, 2636–2639.
- 25R. Daiyan, I. MacGill, R. Amal, ACS Energy Lett. 2020, 5, 3843–3847.
- 26B. Rego de Vasconcelos, J. M. Lavoie, Recent Front. Chem. 2019, 7, 392.
- 27F. Harnisch, C. Urban, Angew. Chem. Int. Ed. 2018, 57, 10016–10023.
- 28D. Puyol, D. J. Batstone, T. Hülsen, S. Astals, M. Peces, J. O. Krömer, Front. Microbiol. 2017, 7, 2106.
- 29K. P. Nevin, T. L. Woodard, A. E. Franks, Z. M. Summers, D. R. Lovley, mBio 2010, 1, e00103–10.
- 30S. Y. Lee, Y.-K. Oh, S. Lee, H. N. Fitriana, M. Moon, M.-S. Kim, J.-Y. Lee, K. Min, G.-W. Park, J.-P. Lee, J.-S. Lee, Bioresour. Technol. 2021, 320, 124350.
- 31M. S. Guzman, K. Rengasamy, M. M. Binkley, C. Jones, T. O. Ranaivoarisoa, R. Singh, D. A. Fike, J. M. Meacham, A. Bose, Nat. Commun. 2019, 10, 1355.
- 32I. S. Thakur, M. Kumar, S. J. Varjani, Y. Wu, E. Gnansounou, S. Ravindran, Bioresour. Technol. 2018, 256, 478–490.
- 33A. Prévoteau, J. M. Carvajal-Arroyo, R. Ganiqué, K. Rabaey, Curr. Opin. Biotechnol. 2020, 62, 48–57.
- 34B. Erickson, J. E. Nelson, P. Winters, Biotechnol. J. 2012, 7, 176–185.
- 35Y. Jiang, H. D. May, L. Lu, P. Liang, X. Huang, Z. J. Ren, Water Res. 2019, 149, 42–55.
- 36K. Rabaey, P. Girguis, L. K. Nielsen, Curr. Opin. Biotechnol. 2011, 22, 371–377.
- 37P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney, S. Shah, Biotechnol. Adv. 2007, 25, 148–175.
- 38M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319.
- 39J. E. Matthiesen, J. M. Carraher, M. Vasiliu, D. A. Dixon, J. P. Tessonnier, ACS Sustainable Chem. Eng. 2016, 4, 3575–3585.
- 40C. Stang, F. Harnisch, ChemSusChem 2016, 9, 50–60.
- 41I. Peñafiel, R. A. W. Dryfe, N. J. Turner, M. F. Greany, ChemCatChem 2021, 13, 864.
- 42H. Chen, F. Dong, S. D. Minteer, Nat. Catal. 2020, 3, 225–244.
- 43V. M. Dembitsky, Tetrahedron 2003, 26, 4701–4720.
- 44C. Kohlmann, S. Lütz, Eng. Life Sci. 2006, 6, 170–174.
- 45B. Cheng, L. Wan, F. A. Armstrong, ChemElectroChem 2020, 7, 4672–4678.
- 46N. Carrillo, E. A. Ceccarelli, Eur. J. Biochem. 2003, 270, 1900–1915.
- 47C. F. Megarity, B. Siritanaratkul, R. S. Heath, L. Wan, G. Morello, S. R. Fitzpatrick, R. L. Booth, A. J. Sills, A. W. Robertson, J. H. Warner, N. J. Turner, F. A. Armstrong, Angew. Chem. Int. Ed. 2019, 58, 4948–4952.
- 48G. Morello, C. F. Megarity, F. A. Armstrong, Nat. Commun. 2021, 12, 340.
- 49L. Wan, R. S. Heath, C. F. Megarity, A. J. Sills, R. A. Herold, N. J. Turner, F. A. Armstrong, ACS Catal. 2021, 11, 6526–6533.
- 50R. D. Milton, R. Cai, S. Abdellaoui, D. Leech, A. L. De Lacey, M. Pita, S. D. Minteer, Angew. Chem. Int. Ed. 2017, 56, 2680–2683.
- 51H. Chen, R. Cai, J. Patel, F. Dong, H. Chen, S. D. Minteer, J. Am. Chem. Soc. 2019, 141, 4963–4971.
- 52P. Dessi, L. Rovira-Alsina, C. Sanchez, G. K. Dinesh, W. Tong, P. Chatterjee, M. Tedesco, P. Farras, H. M. V. Hamelers, S. Puig, Biotechnol. Adv. 2021, 46, 107675.
- 53Z. Yin, H. Peng, X. Wei, H. Zhou, J. Gong, M. Huai, L. Xiao, G. Wang, J. Lu, L. Zhuang, Energy Environ. Sci. 2019, 12, 2455–2462.
- 54P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science 2019, 364, 3506.
- 55S. Arshi, M. Nozari-Asbemarz, E. Magner, Catalysts 2020, 10, 1232.
- 56W. El Housseini, F. Lapicque, A. Walcarius, M. Etienne, Electrochem. Sci. Adv. 2021, e202100012.
- 57F. Enzmann, M. Stöckl, A.-P. Zeng, D. Holtmann, Eng. Life Sci. 2019; 19, 121–132.
- 58L. Marzo, S. K. Pagire, O. Reiser, B. Konig, Angew. Chem. Int. Ed. 2018, 57, 10034–10072.
- 59S. Reischauer, B. Pieber, iScience 2021, 24, 102209.
- 60M. Cherevatskaya, B. König, Russ. Chem. Rev. 2014, 83, 183–195.
- 61N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 1075–10166.
- 62C. R. J. Stephenson, T. P. Yoon, D. W. C. MacMillan, Visible Light Photocatalysis in Organic Synthesis, Wiley-VCH, Weinheim, 2018. ISBN: 978–3-527-33560–2.
- 63J. A. Macia-Agullo, A. Corma, H. Garcia, Chem. Eur. J. 2015, 21, 10940–10959.
- 64L. Schmermund, V. Jurkas, F. Feyza Özgen, G. D. Barone, H. C. Büchsenschütz, C. K. Winkler, S. Scmidt, R. Kourist, W. Kroutil, ACS Catal. 2019, 9, 4115–4144.
- 65S. H. Lee, D. S. Choi, S. K. Kuk, C. B. Park, Angew. Chem. Int. Ed. 2018, 57, 7958–7985.
- 66M. M. Grau, J. C. van der Toorn, L. G. Otten, P. Macheroux, A. Taglieber, F. E. Zilly, I. W. C. E. Arenda, F. Hollmann, Adv. Synth. Catal. 2009, 351, 3279–3286.
- 67M. Mifsud, S. Gargiulo, S. Iborra, I. W. C. E. Arends, F. Hollmann, A. Corma, Nat. Commun. 2014, 5, 3145.
- 68S. Gandomkar, A. Zadlo-Dobrowolska, W. Kroutil, ChemCatChem 2019, 11, 225–243.
- 69J. H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Chem. Rev. 2018, 118, 270–348.
- 70J. Jodlbauer, T. Rohr, O. Spadiut, M. D. Mihovilovic, F. Rudroff, Trends Biotechnol. 2021, 39, 875–889.
- 71L. Al-Haj, Y. Tin Lui, R. M. M. Abed, M. A. Gomaa, S. Purton, Life 2016, 6, 42.
10.3390/life6040042 Google Scholar
- 72T. L. Hamilton, D. A. Bryant, J. L. Macalady, Environ. Microbiol. 2016, 18, 325–340.
- 73J. Singh, D. W. Dhar, Front. Mar. Sci. 2019, 6, 29.
- 74A. Zhang, A. L. Carroll, S. Atsumi, FEMS Microbiol. Lett. 2017, 364, 16.
- 75A. A. Perez, Q. Chen, H. P. Hernandez, F. Branco dos Santos, K. J. Helingwerf, Physiol. Plant. 2019, 166, 413–427.
- 76S. A. Angermayr, A. G. Rovira, K. J. Hellingwerf, Trends Biotechnol. 2015, 33, 352–361.
- 77S. G. Hays, D. C. Ducat, Photosynth. Res. 2015, 123, 285–295.
- 78J. W. Oliver, S. Atsumi, Photosynth. Res. 2014, 120, 249–261.
- 79N. Pattharaprachayakul, J.-I. Choi, A. Incharoensakdi, H. M. Woo Biotechnol. Bioprocess Eng. 2020, 25, 829–847.
- 80R. Bosma, J. H. De Vree, P. M. Slegers, M. Jansen, R. H. Wijffels, M. J. Barbosa, Algal Res. 2014, 6, 160–169.
10.1016/j.algal.2014.10.006 Google Scholar
- 81R. Afreen, S. Tyagi, G. Pratap Singh, M. Singh, Front. Bioeng. Biotechnol. 2021, 9, 624885.
- 82K. Nakamura, R. Yamanaka, K. Tohi, K. H. Hamada, Tetrahedron Lett. 2000, 41, 6799–6802.
- 83K. Nakamura, R. Yamanaka, Chem. Commun. 2002, 2, 1782–1783.
- 84D. Sorigué, B. Légeret, S Cuiné, S. Blangy, S. Moulin, E. Billon, P. Richaud, S. Brugière, Y. Couté, D. Nurizzo, P. Müller, K. Brettel, D. Pignol, P. Arnoux, Y. Li-Beisson, G. Peltier, F. Beisson, Science 2017 357, 903–907.
- 85M. M. E. Huijbers, W. Zhang, F. Tonin, F. Hollmann, Angew. Chem. Int. Ed. 2018, 57, 13648–13651.
- 86D. J. Heyes, B. Lakavath, S. J. O. Hardman, M. Sakuma, T. M. Hedison, N. S. Scrutton, ACS Catal. 2020, 10, 6691–6696.
- 87B. O. Burek, A. Sutor, D. W. Bahnemann, J. Z. Bloh, Catal. Sci. Technol. 2017, 7, 4977–4983.
- 88H. T. Duong, Y. Wu, A Sutor, B. O. Burek, F. Hollmann, J. Z. Bloh, ChemSusChem 2021, 14, 1053–1056.
- 89Y. Ma, X. Zhang, W. Zhang, P. Li, Y. Li, F. Hollmann, Y. Wang, ChemPhotoChem 2020, 4, 39–44.
- 90W. Zhang, M. Ma, M. M. E. Huijbers, G. A. Filonenko, E. A. Pidko, M. Van Schie, S. De Boer, B. O. Burek, J. Z. Bloh, W. J. H. van Berkel, W. A. Smith, F. Hollmann, J. Am. Chem. Soc. 2019, 141, 3116–3120.
- 91M. Amer, E. Z. Wojzik, C. Sun, R. Hoeven, J. M. X. Hughes, M. Faulkner, I. S. Yunus, S. Tait, L. O. Johanissen, S. J. O. Hardman, D. J. Heyes, G.-Q. Chen, M. H. Smith, P. R. Jones, H. S. Toogood, N. S. Scrutton, Energy Environ. Sci. 2020, 13, 1818–1831.
- 92P. M. Yeletski, R. G. Kukushkin, V. A. Yakovlev, B. H. Chen, Fuel 2020, 278, 118255.
- 93N. Dahmen, I. Lewandowski, S. Zibek, A. Weidtmann, GCB Bioenergy 2019, 11, 107–117.
- 94C. O. Tuck, E. Pérez, I. T. Horváth, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695–699.
- 95S. Y. Lee, H. U. Kim, T. U. Chae, J. S. Cho, J. W. Kim, J. H. Shin, D. I. Kim, Y. S. Ko, W. D. Jang, Y. Jang, Nat. Catal. 2019, 2, 18–33.
- 96D. B. Sharma, C. Larroche, C.-G. Dussap, Bioresour. Technol. 2020, 313, 123630.
- 97R. A. Sheldon, Chemicals from Synthesis Gas, Reidel, Dordrecht, 1983. ISBN: 978–94-017-1019–0.
- 98J. R. Phillips, R. L. Huhnke, H. K. Atiyeh, Fermentatio 2017, 3, 28.
10.3390/fermentation3020028 Google Scholar
- 99K. Asimakopoulos, H. N. Gavala, I. V. Skiadis, Chem. Eng. J. 2018, 348, 732–744.
- 100A. S. Mathew, J. Wang1, J. Luo, S.-T. Yau, Sci. Rep. 2015, 5, 15713.
- 101https://processdesign.mccormick.northwestern.edu/index.php/Ethanol to Ethylene (B1).
- 102C. Fu, Z. Li, C. Jia, W. Zhang, Y. Zhang, C. Yi, S. Xie, Energy Convers. Manag.: X 2021, 10, 100059.
- 103N. P. T. Nguyen, C. Raynaud, I. Meynial-Salles, P. Soucaille, Nat. Commun. 2018, 9, 3682.
- 104R. A. Sheldon, Curr. Opin. Green Sust. Chem. 2018, 14, 89–95.
- 105P. Intasian, K. Prakinee, A. Phintha, D. Trisrivirat, N. Weeranoppanant, T. Wongnate, P. Chaiyen, Chem. Rev. 2021, 121, 10367–10451.
- 106P. Hu, S. Chakraborty, A. Kumar, B. Woolston, H. Liu, D. Emerson, G. Stephanopoulos, Proc. Natl. Acad. Sci. USA 2016, 113, 3773–3778.
- 107Y. Xu, Y. Wu, X. Lv, G. Sun, H. Zhang, T. Chen, G. Du, J. Li, L. Liu, Bioresour. Technol. 2021, 332, 125071.
- 108K. Y. Hara, M. Araki, N. Okai, S. Wakai, T. Hasunuma, A. Kondo, Microb. Cell Fact. 2014, 13, 173.
- 109D. Jullesson, F. David, B. Pfleger, J. Nielsen, Biotechnol. Adv. 2015, 33, 1395–1402.
- 110A. Burgard, M. J. Burk, R. Osterhout, S. Van Dien, H. Yim, Curr. Opin. Biotechnol. 2016, 42, 118–125.
- 111H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, S. Van Dien, Nat. Chem. Biol. 2011, 7, 445–452.
- 112H. Chen, O. Simoska, K. Lim, M. Grattieri, M. Yuan, F. Dong, Y. Seok Lee, K. Beaver, S. Weliwatte, E. M. Gaffney, S. D. Minteer, Chem. Rev. 2020, 120, 12903–12993.
- 113C. W. Marshall, D. E. Ross, E. B. Fichot, R. S. Norman, H. D. May, Appl. Environ. Microbiol. 2012, 78, 8412–8420.
- 114R. A. Weusthuis, I. Lamot, J. Van der Oost, J. P. M. Sanders, Trends Biotechnol. 2011, 29, 153–158.
- 115L. A. Kucek, C. M. Spirito, L. T. Angenent, Energy Environ. Sci. 2016, 11, 3482–3494.
- 116M. Suastegui, J. E. Matthiesen, J. M. Carraher, N. Hernandez, N. Rodriguez Quiroz, A. Okerlund, E. W. Cochran, Z. Shao, J. P. Tessonnier, Angew. Chem. Int. Ed. 2016, 55, 2368–2373.
- 117B. Lin, Y. Tao, Microb. Cell. Factories 2017, 16, 106.
- 118Z. Xue, P. L. Sharpe, S. P. Hong, N. S. Yadav, D. Xie, D. R. Short, H. G. Damude, R. A. Rupert, J. E. Seip, J. Wang, D. W. Pollak, M. W. Bostick, M. D. Bosak, D. J. Macool, D. H. Hollerbach, H. Zhang, D. M. Arcilla, S. A. Bledsoe, K. Croker, E. F. McCord, B. D. Tyreus, E. N. Jackson, Q. Zhu, Nat. Biotechnol. 2013, 31, 734–740.
- 119J. U. Bowie, S. Sherkhanov, T. P. Korman, M. A. Valliere, P. H. Opgenorth, H. Liu, Trends Biotechnol. 2020, 38, 766–778.
- 120C. You, T. Shi, Y. Li, P. Han, X. Zhou, Y.-H. P. Zhang, Biotechnol. Bioeng. 2017, 114, 1855–1864.
- 121A. S. Karim, Q. M. Dudley, A. Juminaga, Y. Yuan, S. A. Crowe, J. T. Heggestad, S. Garg, T. Abdalla, W. S. Grubbe, B. J. Rasor, D. N. Coar, M. Torculas, M. Krein, F. M. Liew, A. Quattlebaum, R. O. Jensen, J. A. Stuart, S. D. Simpson, M. Köpke, M. C. Jewett, Nat. Chem. Biol. 2020, 16, 912–919.
- 122J. R. M. Almeida, L. C. L. Fávaro, B. F. Quirino, Biotechnol. Biofuels 2012, 5, 48.
- 123W.-H. Chen, H.-J. Lo, K.-L. Yu, H.-C. Ong, H.-K. Sheen, Environ. Pollut. 2021, 285, 117196.
- 124F. W. S. Lucas, R. Grim, S. A. Tacey, C. A. Downes, J. Hasse, A. M. Roman, C. A. Farberow, J. A. Schaidle, A. Holewinski, ACS Energy Lett. 2021, 6, 1205–1270.
- 125M. Galbe, O. Wallberg, Biotechnol Biofuels 2019, 12, 294.
- 126Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, K. Barta, Chem Rev. 2018, 118, 614–678.
- 127S. Sutiono, A. Pick, V. Sieber, Green Chem. 2021, 23, 3656–3663.
- 128G. Bokinsky, P. P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. S. Lee, D. Tullman-Ercek, C. A. Voigt, B. A. Simmons, J. D. Keasling, Proc Natl. Acad. Sci. USA 2011, 108, 19949–19954.
- 129B. Patel, A. Patel, B. A. Syed, B. Gami, P. Patel, Biomass Bioenergy 2021, 154, 106273.
- 130C. Zhao, T. Brück, J. A. Lercher, Green Chem. 2013, 15, 1720–1739.
- 131R. Sankaran, R. A. Parra Cruz, H. Pakalapati, P. L. Show, T. C. Ling, W.-H. Chen, Y. Tao, Biores.Technol. 2020, 298, 122476.
- 132J. Ruiz, G. Olivieri, J. De Vree, R. Bosma, P. Willems, J. H. Reith, M. H. M. Eppink, D. M. M. Kleinegris, R. H. Wijffels, M. J. Barbosa, Energy Environ. Sci. 2016, 9, 3036–3043.
- 133M. A. Scaife, A. Merkx-Jaccques, D. L. Woodhall, R. E. Armenta, Renew. Sustain. Energy Rev. 2015, 35, 620–642.
- 134L. Brennan, P. Owende, Renew. Sust. Energy Rev. 2010, 14, 557–577.
- 135E. S. Shuba, D. Kifle, Renew Sust. Energy Rev. 2018, 81, 743–755.
- 136G. C. Dismukes, D. Carrieri, N. Bennette, G. M. Ananyev, M. C. Posewitz, Curr. Opin. Biotechnol. 2008, 19, 235–240.
- 137J. W. R. Chong, K. S. Khoo, G. Y. Yew, W. H. Leong, J. W. Lim, M. K. Lam, Y.-C. Ho, H. S. Ng, H. S. H. Munawaroh, P. L. Show, Biores. Technol. 2021, 342, 125947.
- 138L. Lu, Z. J. Ren, Bioresour. Technol. 2016, 215, 254–264.
- 139CO2 for a clean performance: Rheticus research project enters phase 2, https://press.siemens.com/global/en/pressrelease/research-project-rheticus.
- 140V. Rodin, J. Lindorfer, H. Böhm, L. Vieira, J. CO2 Utilization 2020, 41, 101219.
- 141D. F. Emerson, G. Stephanopoulos, Curr. Opin. Biotechnol. 2019, 59, 39–45.
- 142C. Alonso-Moreno, S. García-Yuste, Sci. Total Environ. 2016, 568, 319–326.
- 143M. Guo, W. Song, New Biotechnol. 2019, 49, 48–57.
- 144D. L. Sanchez, N. Johnson, S. T. McCoy, P. A. Turner, K. J. Mach, Proc. Natl. Acad. Sci. USA 2018, 115, 4875–4880.
- 145S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quéré, V. Naik, S. O′Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, G. Zeng, Nat. Geosci. 2013, 6, 813–823.
- 146S. Zhang, Z. Lui, J. Chem. Technol. Biotechnol. 2021, 96, 1475–1495.
- 147M. Köpke, S. D. Simpson, Curr. Opin. Biotechnol. 2020, 65, 180–189.
- 148T. Werpy, G. Petersen, Report No: NREL/TP 510-35523, US Department of Energy, 2004, https://www.nrel.gov/docs/fy04osti/35523.pdf.
- 149C. Pateraki, M. Patsalou, A. Vlysidis, N. Kopsahelis, C. Webb, A. A. Koutinas, M. Koutinas, Biochem. Engin. J. 2016, 112, 285–303.
- 150Q. Zhang, Nurhayati, C.-L. Cheng, D. Nagarajan, J.-S. Chang, J. Hu, D.-J. Lee, Appl. Energy 2017, 206, 364–371.
- 151G. Hu, Y. Li, C. Ye, L. Liu, X. Chen, Trends Biotechnol. 2019, 37, 532–547.
- 152Z. Li, X. Xin, B. Xiong, D. Zhao, X. Zhang, C. Bi, Microb. Cell Fact. 2020, 19, 228.
- 153J. Zarzycki, V. Brecht, M. Muller, G. Fuchs, Proc. Natl. Acad. Sci. USA 2009, 106, 21317–21322.
- 154A. J. Loder, Y. Han, A. B. Hawkins, H. Lian, G. L. Lipscomb, G. J. Schut, M. W. Keller, M. Adams, R. M. Kelly, Metab. Eng. 2016, 38, 446–463.
- 155S. Wu, U. T. Bornscheuer, Engin. Microbiol. 2021, 100006.
- 156C. You, H. Chen, S. Myung, N. Sathitsuksanoh, H. Ma, X.-Z. Zhang, J. Li, Y.-H. P. Zhang, Proc. Natl. Acad. Sci. USA. 2013, 110, 7182–7187.
- 157T. Cai, H. Sun, J. Qiao, L. Zhu, F. Zhang, J. Zhang, Z. Tang, X. Wei, J. Yang, Q. Yuan, W. Wang, X. Yang, H. Chu, Q. Wang, C. You, H. Ma, Y. Sun, Y. Li, C. Li, H. Jiang, Q. Wang, Y. Ma, Science 2021, 373, 1523–1527.
- 158Z. Huang, G. Grim, J. Schaidle, L. Tao, Appl. Energy 2020, 280, 115964.
- 159F. Liew, D. Heijstra, C. Mihalcea, M. Köpke, Front. Microbiol. 2016, 7, 694.
- 160Global Plastics Flow 2018. Available at: https://www.carboliq.com/pdf/19 conversio global plastics flow 2018 summary.pdf.
- 161U. S. Chaudhari, Y. Lin, V. S. Thompson, R. M. Handler, J. M. Pearce, G. Caneba, P. Muhuri, D. Watkins, D. R. Shonnard, ACS Sustainable Chem. Eng. 2021, 9, 7403–7421.
- 162D. R. Shonnard, E. Tipaldo, V. Thompson, J. M. Pearce, G. T. Caneba, R. Handler, Procedia CIRP 2019, 80, 602–606.
10.1016/j.procir.2019.01.072 Google Scholar
- 163The Environmental Impacts of Plastics and Micro-Plastics Use, Waste and Pollution: EU and National Measures-European Parliament Think Tank https://www.europarl.europa.eu/thinktank/en/document.html?reference=IPOL STU(2020)658279.
- 164J. N. J. Weston, P. Carrillo-Barragan, T. D. Linley, W. D. K. Reid, A. J. Jamieson, Zootaxa 2020, 4748, 163–181.
- 165Ellen Macarthur Foundation 2013 Towards the Circular Economy https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur Foundation-Towards-the-Circular-Economy-vol.1.pdf.
- 166R. A. Sheldon, Phil. Trans. R. Soc. 2020, A 378, 20190274.
- 167R. A. Sheldon, M. Norton, Green Chem. 2020, 22, 6310–6322.
- 168J.-P. Lange, ACS Sustainable Chem. Eng. 2021, 9, 15722–15738.
- 169H. Sun, C. Rosenthal, L. D. Schmidt, ChemSusChem 2012, 5, 1883–1887; see also http://www.agilyx.com.
- 170For an excellent overview of chemical recycling of plastic waste see: I. Vollmer, M. J. F. Jenks, M. C. P. Roelands, R. J. White, T. van Harmelen, P. de Wild, G. P. van der Laan, F. Meirer, J. T. F. Keurentjes, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2020, 59, 15402–15423:.
- 171R. Wei, T. Tiso, J. Bertling, K. O'Connor, L. M. Blank, U. T. Bornscheuer, Nat. Catal. 2020, 3, 867–871.
- 172S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura, K. Oda, Science 2016, 351, 1196–1198.
- 173See also U. Bornscheuer, Science 2016, 351, 1154–1155.
- 174S. Joo, I. J. Cho, H. Seo, H. F. Son, H.-Y. Sagong, T. J. Shin, S. Y. Choi, S. Y. Lee, K.-J. Kim, Nat. Commun. 2018, 9, 382.
- 175For a recent review of PET hydrolases see: F. Kawai, T. Kawabata, M. Oda, ACS Sust. Chem. Eng. 2020, 8, 8894–8908.
- 176W. Zimmerman, Philos. Trans. R. Soc. 2020, 378, 20190273.
- 177H. P. Austin, M. D. Allen, B. S. Donohoe, N. A. Rorrer, F. L. Kearns, R. L. Silveira, B. C. Pollard, G. Dominick, R. Duman, K. El Omari, V. Mykhaylyk, A. Wagner, W. E. Michener, A. Amore, M. S. Skaf, M. F. Crowley, A. W. Thorne, C. W. Johnson, H. L. Woodcock, J. E. McGeehan, G. T. Beckham, PNAS 2018, 115, E4350-E4357.
- 178R. Wei, W. Zimmerman, Microb. Biotechnol. 2017, 10, 1302–1307 and references cited therein.
- 179R. Wei, D. Breite, C. Song, D. Gräsing, T. Ploss, P. Hille, R. Schwerdtfeger, J. Matysik, A. Schulze, W. Zimmermann, Adv. Sci. 2019, 6, 1900491.
10.1002/advs.201900491 Google Scholar
- 180A. M. de Castro, A. Carniel, Biochem. Eng. J. 2017, 124, 64–68.
- 181C. Gamerith, B. Zartl, A. Pellis, F. Guillamot, A. Marty, E. H. Acero, G. M. Guebitz, Process Biochem. 2017, 59, 58–64.
- 182S. Sulaiman, S. Yamoto, E. Kanaya, J.-J. Kim, Y. Koga, K. Takano, S. Kanaya, Appl. Environ. Microbiol. 2012, 78, 1556–1562.
- 183V. Tournier, C. M. Topham, A. Gilles, B. David, C. Folgoas, E. Moya-Leclair, E. Kamionka, M.-L. Desrousseaux, H. Texier, S. Gavalda, M. Cot, E. Guémard, M. Dalibey, J. Nomme, G. Cioci, S. Barbe, M. Chateau, I. André, S. Duquesne, A. Marty, Nature 2020, 580, 216–219.
- 184R. A. Sheldon, J. M. Woodley, Chem. Rev. 2018, 118, 801–838.
- 185F. Yan, R. Wei, Q. Cui, U. T. Bornscheuer, Y.-J. Liu, Microb. Biotechnol. 2020, 14, 374–385 .
- 186T. Tiso, T. Narancic, R. Wei, E. Pollet, N. Beagan, K. Schröder, A. Honak, M. Jiang, S. T. Kenny, N. Wierckx, R. Perrin, L. Avérous, W. Zimmermann, K. O'Connor, L. M. Blank, Metab. Eng. 2021, 66, 167–178.
- 187L. DeFrancesco, Nat. Biotechnol. 2020, 38, 665–668.
- 188Y. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354–362.
- 189A. Gandini, T. M. Lacerda, A. J. F. Carvalho, E. Trovatti, Chem. Rev. 2016, 116, 1637–1669.
- 190M. Carus, Industrial Biotechnol. 2017, 13, 41–51.
10.1089/ind.2017.29073.mca Google Scholar
- 191L. Shen, E. Nieuwlaar, E. Worrell, M. K. Patel, Int. J. Life Cycle Assess 2011, 6, 522–536.
- 192See also: L. Chen, R. E. O. Pelton, T. M. Smith, J. Clean.Product. 2016, 317, 667–676.
- 193R. Hatti-Kaul, L. J. Nilsson, B. Zhang, N. Rehnberg, S. Lundmark, Trends Biotechnol. 2020, 38, 50–67.
- 194V. Siracusa, I. Blanco, Polymers 2020, 12, 1641.
- 195D. A. Fereirr-Filipe, A. Paco, A. C. Duarte, T. Rocha-Santos, A. L. Patricio-Silva, Int. J. Environ. Res. Public Health 2021, 18, 7729.
- 196S. RameshKumar, P. Shaiju, K. E. O‘Connor, R. Babu, Curr. Opin. Green Sust. Chem. 2020, 21, 75–81.
- 197G. Coppolla, M. T. Gaudio, C. G. Lopresto, V. Calabro, S. Curcio, S. Chakraborty, Earth Systems Environ. 2021, 5, 231–251.
10.1007/s41748-021-00208-7 Google Scholar
- 198S. V. Mohan, J. A. Modestra, K. Amulya, S. K. Butti, G. Velvizhi, Trends Biotechnol. 2016, 34, 506–519.
- 199P. Scarfato, L. DiMaio, L. Incarnato, J. Appl. Polym. Sci. 2015, 132, 42597.
- 200J. K. Saini, R. Saini, L. Tewari, 3 Biotech 2015, 5, 337–353.
- 201J. Esteban, M. Ladero, Food Sci. Technol. 2018, 53, 1095–1108.
- 202G. Q. Chen, M. K. Patel, Chem. Rev. 2011, 112, 2082–2099.
- 203C. Zhang, P.-L. Show, S.-H. Ho, Bioresour. Technol 2019, 289, 121700.
- 204H. Nakajima, P. Dijkstra, K. Loos, Polymers 2017, 9, 523.
- 205M. Volanti, D. Cespi, F. Passarini, E. Neri, F. Cavani, P. Mizsey, D. Fozer, Green Chem. 2019, 21, 885–896.
- 206D. I. Collias, A. M. Harris, V. Nagpal, I. W. Cottrel, M. W. Schultheis, Ind. Biotechnol. 2014, 10, 91–105.
- 207https://www.avantium.com.
- 208Z. Zhang, K. Deng, ACS Catal. 2015, 5, 6529–6544.
- 209W. P. Dijkman, C. Binda, M. W. Fraaije, A. Mattevi, ACS Catal. 2015, 5, 1833–1839.
- 210A. J. J. E. Eerhart, A. P. C. Faaij, M. K. Patel, Energy Environ. Sci. 2012, 5, 6407–6422.
- 211For a recent review see: X. Fei, J. Wang, J. Zhu, X. Wang, X. Liu, ACS Sust. Chem. Eng. 2020, 8, 8471–8485.
- 212G. Z. Papageorgiou, D. G. Papageorgiou, V. Tsanaktsis, D. N. Bikiaris, Polymer 2015, 62, 28–38.
- 213E. Korkakaki, M. Mulders, A. Veeken, R. Rozendal, M. C. Van Loosdrecht, R. Kleerebezem, Water Res. 2016, 96, 74–83.
- 214T. Pittman, H. Steinmetz, Bioengineering 2017, 4, 54.
10.3390/bioengineering4020054 Google Scholar
- 215J. Tamis, M. Mulders, H. Dijkman, R. Rozendal, J. Environ. Eng. 2018, 144, 04018107.
- 216B. Johnston, I. Radecker, D. Hill, E. Chiellini, V. Ivanova Illieva, W. Sikorska, M. Musiol, M. Zieba, A. A. Marek, D. Keddie, B. Mendrek, S. Darbar, G. Adamus, M. Kowalczuk, Polymers 2018, 10, 957–979.
- 217https://www.plasticstoday.com/materials/newlight-licenses-aircarbon-ikea/57710583724253.
- 218M. K. M. Smith, D. M. Paleri, M. Abdelwahab, D. F. Mielewski, M. Misrah, M. Lumar Mohanti, Green Chem. 2020, 22, 3906–3916.
- 219L. G. Hong, N. Y. Yuhana, E. Z. E. Zawawi, AIMS Materials Science 2021, 8, 166–184.
- 220X. Zhao, K. Cornish, Y. Vodovotz, Environ. Sci. Technol. 2020, 54, 4712–4732.
- 221A. Yadav, S. Mangaraj, R. Singh, N. Kumar, A. Simran, Int. J. Chem. Stud. 2018, 6, 2411–2418.
- 222D. Tan, Y. Wang, Y. Tong, G.-Q. Chen, Trends Biotechnol. 2021, 39, 953–963.
- 223S. Spierling, E. Knüpffer, H. Behnsen, M. Mudersbach, H. Krieg, S. Springer, S. Albrecht, C. Herrmann, H.-J. Endres, J. Clean. Product. 2018, 185, 476–491.
- 224J. Wu, K. Zhang, N. Girouard, J. C. Meredith, Biomacromolecules 2014, 15, 4614–4620.
- 225C. C. Satam, C. W. Irvin, A. W. Lang, J. C. R. Jallorina, M. L. Shofner, J. R. Reynolds, J. C. Meredith, ACS Sustainable Chem. Eng. 2018, 6, 10637–10644.
- 226M. A. R. Maier, Macromol. Rapid. Commun. 2019, 40, 1800524.
- 227R. K. Donato, A. Mija, Polymers 2020, 12, 32.
- 228J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55, 7296–7343.
- 229J. R. Phillips, R. L. Huhnke, H. K. Atiyeh, Fermentation 2017, 3, 28.
10.3390/fermentation3020028 Google Scholar
- 230https://www.plasticstoday.com/materials/newlight-licenses-aircarbon-ikea/57710583724235.