Enhancing the Electrochemical Performance of Aqueous Processed Li-Ion Cathodes with Silicon Oxide Coatings
Corresponding Author
Dr. Jaswinder Sharma
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Georgios Polizos
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Marm Dixit
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Charl J. Jafta
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. David A. Cullen
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, 37831 USA
Search for more papers by this authorDr. Yaocai Bai
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Xiang Lyu
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Jianlin Li
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Ilias Belharouak
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorCorresponding Author
Dr. Jaswinder Sharma
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Georgios Polizos
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Marm Dixit
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Charl J. Jafta
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. David A. Cullen
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, 37831 USA
Search for more papers by this authorDr. Yaocai Bai
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Xiang Lyu
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Jianlin Li
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorDr. Ilias Belharouak
Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Search for more papers by this authorGraphical Abstract
A low-cost and scalable strategy for coating the battery cathode materials with SiO2 is demonstrated. Improved cohesion and adhesion strength and lesser cracks were observed in SiO2-coated cathode materials, indicating increased cathode structural integrity. Electrochemical performance was also improved compared with the uncoated cathode materials in aqueously processed cathodes.
Abstract
Lithium-ion battery cathode materials suffer from bulk and interfacial degradation issues, which negatively affect their electrochemical performance. Oxide coatings can mitigate some of these problems and improve electrochemical performance. However, current coating strategies have low throughput, are expensive, and have limited applicability. In this article, we describe a low-cost and scalable strategy for applying oxide coatings on cathode materials. We report synergistic effects of these oxide coatings on the performance of aqueously processed cathodes in cells. The SiO2 coating strategy developed herein improved mechanical, chemical, and electrochemical performance of aqueously processed Ni-, Mn- and Co-based cathodes. This strategy can be used on a variety of cathodes to improve the performance of aqueously processed Li-ion cells.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Additional data provided in supporting information
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cssc202300350-sup-0001-misc_information.pdf964.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Nie, Y. Hong, J. Qiu, Q. Li, X. Yu, H. Li, L. Chen, Front. Chem. 2018, 6, 616;
- 1bL. Ni, S. Zhang, A. Di, W. Deng, G. Zou, H. Hou, X. Ji, Adv. Energy Mater. 2022, 12, 2201510;
- 1cY. Kim, W. M. Seong, A. Manthiram, Energy Storage Mater. 2021, 34, 250–259;
- 1dY. Lei, J. Ni, Z. Hu, Z. Wang, F. Gui, B. Li, P. Ming, C. Zhang, Y. Elias, D. Aurbach, Q. Xiao, Adv. Energy Mater. 2020, 10, 2002506;
- 1eN. Muralidharan, E. C. Self, M. Dixit, R. Essehli, R. Amin, J. Nanda, I. Belharouak, Adv. Energy Mater. 2022, 12, 2103050.
- 2
- 2aS. K. Heiskanen, N. Laszczynski, B. L. Lucht, J. Electrochem. Soc. 2020, 167, 100519 ;
- 2bW. M. Dose, I. Temprano, J. P. Allen, E. Björklund, C. A. O′Keefe, W. Li, B. L. Mehdi, R. S. Weatherup, M. De Volder, C. P. Grey, ACS Appl. Mater. Interfaces 2022, 14, 13206–13222.
- 3
- 3aN. Wang, X. Qiu, J. Xu, J. Huang, Y. Cao, Y. Wang, ACS Materials Lett. 2022, 4, 190–204;
- 3bJ. Park, K. Ku, S.-B. Son, J. Gim, Y. Kim, E. Lee, C. Johnson, J. Electrochem. Soc. 2022, 169, 030536.
- 4
- 4aP. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, J. Energy Chem. 2020, 43, 220–235;
- 4bG. Kaur, B. D. Gates, J. Electrochem. Soc. 2022, 169, 043504;
- 4cJ. Cheng, K. D. Fong, K. A. Persson, J. Mater. Chem. A 2022, 10, 22245–22256;
- 4dH. Zhang, J. Xu, J. Zhang, Front. Mater. 2019, 6, 309;
- 4eJ. Liu, J. Wang, Y. Ni, J. Liu, Y. Zhang, Y. Lu, Z. Yan, K. Zhang, Q. Zhao, F. Cheng, J. Chen, Angew. Chem. 2022, 134, e202207000;
10.1002/ange.202207000 Google Scholar
- 4fJ. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, B. Park, Angew. Chem. 2003, 115, 1656–1659;
10.1002/ange.200250452 Google Scholar
- 4gS. Lee, Y. Cho, H.-K. Song, K. T. Lee, J. Cho, Angew. Chem. 2012, 124, 8878–8882;
10.1002/ange.201203581 Google Scholar
- 4hX. Pan, H. Sun, Z. Wang, H. Huang, Q. Chang, J. Li, J. Gao, S. Wang, H. Xu, Y. Li, W. Zhou, Adv. Energy Mater. 2020, 10, 2002416;
- 4iU. Nisar, N. Muralidharan, R. Essehli, R. Amin, and I. Belharouak, Energy Storage Mater. 2021, 38, 309–321.
- 5P. Mohan, G. P. Kalaignan, J. Nanosci. Nanotechnol. 2013, 13, 2765–2770.
- 6
- 6aG. T.-K. Fey, H.-Z. Yang, T. P. Kumar, S. P. Naik, A. S. T. Chiang, D.-C. Lee, J.-R. Lin, J. Power Sources 2004, 132, 172–180;
- 6bU. Nisar, R. K. Petla, S. A. J. A. Al-Hail, R. A Shakoor, R. Essehli, R. Kahraman, S. Y. AlQaradawi, D. K. Kim, I. Belharouak, M. R. Amin, ACS Appl. Energy Mater. 2019, 2, 7263–7271.
- 7X. Lu, N. Zhang, M. Jahn, W. Pfleging, H. J. Seifert, Appl. Sci. 2019, 9, 3671.
- 8
- 8aQ. Hou, G. Cao, P. Wang, D. Zhao, X. Cui, S. Li, C. Li, J. Alloys Compd. 2018, 747, 796–802;
- 8bK. Fu, L. Xue, O. Yildiz, S. Li, H. Lee, Y. Li, G. Xu, L. Zhou, P. D. Bradford, X. Zhang, Nano Energy 2013, 2, 976–986.
- 9
- 9aMuralidharan, C. N. Brock, A. P. Cohn, D. Schauben, R. E. Carter, L. Oakes, D. G. Walker, C. L. Pint, ACS Nano. 2017, 6, 6241–6251;
- 9bK. Wu, W. Li, J. Qin, Y. Hao, H. M. K. Sari, H. Feng, X. Li, JMR 2020, 35, 762–774;
- 9cS. Li, Y. Liu, J. Zhu, Y. Wang, J. Jiang, C. M. Li, ACS Appl. Energy Mater. 2021, 4, 11711–11719.
- 10B. Uzakbaiuly, A. Mukanova, Y. Zhang, Z. Bakenov, Front. Energy Res. 2021, 9, 625123.
- 11
- 11aM. Wood, J. Li, R. E. Ruther, Z. Du, E. C. Self, H. M. Meyer III, C. Daniel, I. Belharouak, D. L. Wood III, Energy Storage Mater. 2020, 24, 188–197;
- 11bR. Sahore, M. Wood, A. Kukay, Z. Du, K. M. Livingston, D. L. Wood III, J. Li, J. Electrochem. Soc. 2022, 169, 040567;
- 11cA. Kukay, R. Sahore, A. Parejiya, W. B. Hawley, J. Li, D. L. Wood, J. Colloid Interface Sci. 2021, 581, 635–643;
- 11dD. L. Wood, J. D. Quass, J. Li, S. Ahmed, D. Ventola, C. Daniel, Drying Technol. 2018, 36, 234–244;
- 11eJ. Li, J. Fleetwood, W. B. Hawley, W. Kays, Chem. Rev. 2022, 122, 903–956;
- 11fR. Sahore, D. L. Wood, A. Kukay, K. M. Grady, J. Li, I. Belharouak, ACS Sustainable Chem. Eng. 2020, 8, 3162–3169.
- 12
- 12aY. Oniki, Y. Iwazaki, M. Hasumi, T. Ueno, K. Kuroiwa, J. Appl. Phys. 2009, 48, 05DA01;
10.1143/JJAP.48.05DA01 Google Scholar
- 12bM. C. Poon, C. W. Kok, H. Wong, P. J. Chan, Thin Solid Films 2004, 462–463, 42–45.
- 13X. Lu, N. Zhang, M. Jahn, W. Pfleging, H. J. Seifert, Appl. Sci. 2019, 9, 3671.
- 14I. Doberdo, N. Loffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G. T. Kim, S. Passerini, J. Power Sources 2014, 248, 1000–1006.
- 15
- 15aB. P. N. Nguyen, N. Mariage, R. Fredon, E. M. Kelder, B. Lestriez, Journal of The Electrochemical Society 2015, 162, A1451-A1459;
- 15bS. Neudeck, A. Mazilkin, C. Reitz, P. Hartmann, J. Janek, T. Brezesinski, Scientific reports 2019, 9, 5328.
- 16S. Li, Y. Liu, J. Zhu, Y. Wang, J. Jiang, C. M. Li, ACS Appl. Energy Mater. 2021, 4, 11711–11719.
- 17A. C. Pierre, G. M. Pajonk, Chem. Rev. 2002, 102, 4243–4265.
- 18Y. Nakatuka, H. Yoshida, K. Fukui, M. Matuzawa, Adv. Powder Technol. 2015, 26, 650–656.