Sulfur-Bridged Iron and Molybdenum Catalysts for Electrocatalytic Ammonia Synthesis
Corresponding Author
Xiaojiao Yuan
Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007 Spain
Search for more papers by this authorCorresponding Author
J. R. Galán-Mascarós
Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007 Spain
ICREA, Passeig Lluis Companys 23, Barcelona, 08010 Spain
Search for more papers by this authorCorresponding Author
Xiaojiao Yuan
Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007 Spain
Search for more papers by this authorCorresponding Author
J. R. Galán-Mascarós
Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, Tarragona, 43007 Spain
ICREA, Passeig Lluis Companys 23, Barcelona, 08010 Spain
Search for more papers by this authorGraphical Abstract
Inspired by nature nitrogen fixation mechanisms, carbon-zero electrocatalytic ammonia synthesis as a sustainable alternative to the Haber-Bosch process is explored. It highlights recent advancements in S-bridged Fe/Mo catalysts, addressing key challenges in NRR and NO3–RR for ammonia synthesis under ambient temperature and pressure.
Abstract
Carbon zero electrocatalytic nitrogen reduction reaction (NRR), converting N2 to NH3 under ambient temperature and pressure, offers a sustainable alternative to the energy-intensive Haber-Bosch process. Nevertheless, NRR still faces major challenges due to direct dissociation of the strong N≡N triple bond, poor selectivity, as well as other issues related to the inadequate adsorption, activation and protonation of N2. In nature's nitrogen fixation, microorganisms are able to convert N2 to ammonia at ambient temperature and pressure, and in aqueous environment, thanks to the nitrogenase enzymes. The core NRR performance is achieved with sulfur-rich Fe transition metal clusters as active site cofactors to capture and reduce N2, with optimum performance found for Fe−Mo clusters. Because of this reason, artificial analogs in Fe−Mo coordination chemistry have been explored. However, the studies of sulfur coordinated Fe, Mo catalysts for electrocatalytic ammonia synthesis are scarce. In this review, the recent progress of Fe−Mo sulfur-bridged catalysts (including sulfur-coordinated single-site catalysts in carbon frameworks and MoS2-based catalysts) and their activities for the ammonia synthesis from nitrate reduction reaction (NO3–RR) and nitrogen reduction reaction (NRR) are summarized. Further existing challenges and future perspectives are also discussed.
Conflict of Interests
The authors declare no conflict of interest.
References
- 1X. Zhang, C. Pei, Z.-J. Zhao, J. Gong, Energy Environ. Sci. 2024, 17, 2381–2405.
- 2A. Valera-Medina, F. Amer-Hatem, A. K. Azad, I. Dedoussi, M. De Joannon, R. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, Energy Fuels 2021, 35, 6964–7029.
- 3J. Humphreys, R. Lan, S. Tao, Adv. Energy Sustainability Res. 2021, 2, 2000043.
- 4O. Einsle, D. C. Rees, Chem. Rev. 2020, 120, 4969–5004.
- 5J. Kim, D. C. Rees, Biochemistry 1994, 33, 389–397.
- 6B. K. Burgess, D. J. Lowe, Chem. Rev. 1996, 96, 2983–3012.
- 7G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith III, T. W. Hamann, Chem. Rev. 2020, 120, 5437–5516.
- 8Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei, J. Qiu, Energy Environ. Sci. 2021, 14, 1176–1193.
- 9J. Deng, J. A. Iñiguez, C. Liu, Joule 2018, 2, 846–856.
- 10X. Guo, H. Du, F. Qu, J. Li, J. Mater. Chem. A 2019, 7, 3531–3543.
- 11J. Mu, X. W. Gao, T. Yu, L. K. Zhao, W. B. Luo, H. Yang, Z. M. Liu, Z. Sun, Q. F. Gu, F. Li, Adv. Sci. 2024, 11, 2308979.
- 12J. Schimpl, H. M. Petrilli, P. E. Blöchl, J. Am. Chem. Soc. 2003, 125, 15772–15778.
- 13R. Hardy, R. Burns, G. Parshall, Inorg. Biochem. 1973, 2, 745–793.
- 14R. A. Henderson, Chem. Rev. 2005, 105, 2365–2438.
- 15S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nat. Catal. 2018, 1, 490–500.
- 16J. Zhou, X. Liu, L. Zhu, S. Niu, J. Cai, X. Zheng, J. Ye, Y. Lin, L. Zheng, Z. Zhu, Chem 2020, 6, 221–233.
- 17L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2019, 120, 683–733.
- 18H. Kawaguchi, K. Yamada, S. Ohnishi, K. Tatsumi, J. Am. Chem. Soc. 1997, 119, 10871–10872.
- 19J. Han, M. Koutmos, S. A. Ahmad, D. Coucouvanis, Inorg. Chem. 2001, 40, 5985–5999.
- 20A. G. Algarra, M. G. Basallote, M. J. Fernandez-Trujillo, R. Llusar, J. A. Pino-Chamorro, I. Sorribes, C. Vicent, Dalton Trans. 2010, 39, 3725–3735.
- 21M. Koutmos, D. Coucouvanis, Angew. Chem. Int. Ed. 2004, 43, 5023–5025.
- 22D. Coucouvanis, P. Stremple, E. Simhon, D. Swenson, N. Baenziger, M. Draganjac, L. Chan, A. Simopoulos, V. Papaefthymiou, Inorg. Chem. 1983, 22, 293–308.
- 23S. M. Malinak, D. Coucouvanis, Prog. Inorg. Chem. 2001, 599–662.
- 24K. Tanifuji, Y. Ohki, Chem. Rev. 2020, 120, 5194–5251.
- 25A. McSkimming, D. L. Suess, Nat. Chem. 2021, 13, 666–670.
- 26Y. Ohki, K. Munakata, Y. Matsuoka, R. Hara, M. Kachi, K. Uchida, M. Tada, R. E. Cramer, W. Sameera, T. Takayama, Nature 2022, 607, 86–90.
- 27B. Smith, M. Durrant, S. Fairhurst, C. Gormal, K. Grönberg, R. Henderson, S. Ibrahim, T. Le Gall, C. Pickett, Coord. Chem. Rev. 1999, 185, 669–687.
- 28J. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501, 84–87.
- 29A. L. Speelman, I. Čorić, C. Van Stappen, S. DeBeer, B. Q. Mercado, P. L. Holland, J. Am. Chem. Soc. 2019, 141, 13148–13157.
- 30I. Čorić, P. L. Holland, J. Am. Chem. Soc. 2016, 138, 7200–7211.
- 31I. Čorić, B. Q. Mercado, E. Bill, D. J. Vinyard, P. L. Holland, Nature 2015, 526, 96–99.
- 32J. Zheng, L. Lu, K. Lebedev, S. Wu, P. Zhao, I. J. McPherson, T.-S. Wu, R. Kato, Y. Li, P.-L. Ho, Chem Catal. 2021, 1, 162–182.
- 33W. Song, C. Xiao, J. Ding, Z. Huang, X. Yang, T. Zhang, D. Mitlin, W. Hu, Adv. Mater. 2024, 36, 2301477.
- 34P. H. van Langevelde, I. Katsounaros, M. T. Koper, Joule 2021, 5, 290–294.
- 35L. M. Pellows, M. A. Willis, J. L. Ruzicka, B. P. Jagilinki, D. W. Mulder, Z.-Y. Yang, L. C. Seefeldt, P. W. King, G. Dukovic, J. W. Peters, Nano Lett. 2023, 23, 10466–10472.
- 36K. A. Brown, D. F. Harris, M. B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J. W. Peters, L. C. Seefeldt, Science 2016, 352, 448–450.
- 37J. Wan, H. Zhang, J. Yang, J. Zheng, Z. Han, W. Yuan, B. Lan, X. Li, Appl. Catal. B: Environ. Energy 2024, 347, 123816.
- 38Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W. C. Cheong, R. Shen, Adv. Mater. 2018, 30, 1800588.
- 39M. I. Ahmed, L. J. Arachchige, Z. Su, D. B. Hibbert, C. Sun, C. Zhao, ACS Catal. 2022, 12, 1443–1451.
- 40C. Shao, L. Wu, H. Zhang, Q. Jiang, X. Xu, Y. Wang, S. Zhuang, H. Chu, L. Sun, J. Ye, Adv. Funct. Mater. 2021, 31, 2100833.
- 41C. Li, Y. Zhang, M. Yuan, Y. Liu, H. Lan, Z. Li, K. Liu, L. Wang, Chem. Eng. J. 2023, 471, 144515.
- 42S. Chen, X. Li, C. W. Kao, T. Luo, K. Chen, J. Fu, C. Ma, H. Li, M. Li, T. S. Chan, Angew. Chem. Int. Ed. 2022, 61, e202206233.
- 43P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Angew. Chem. Int. Ed. 2017, 56, 610–614.
- 44Y. Hou, M. Qiu, M. G. Kim, P. Liu, G. Nam, T. Zhang, X. Zhuang, B. Yang, J. Cho, M. Chen, Nat. Commun. 2019, 10, 1392.
- 45Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu, J. Zhou, H. Li, H. Xia, J. He, Q. Xu, Adv. Mater. 2018, 30, 1804504.
- 46Y. Li, Y. Ji, Y. Zhao, J. Chen, S. Zheng, X. Sang, B. Yang, Z. Li, L. Lei, Z. Wen, Adv. Mater. 2022, 34, 2202240.
- 47T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Adv. Mater. 2018, 30, 1800757.
- 48J. Guo, T. T. Tsega, I. U. Islam, A. Iqbal, J. Zai, X. Qian, Chin. Chem. Lett. 2020, 31, 2487–2490.
- 49J. Wang, Z. Sun, Y. Li, L. Guo, Y. Wang, C. Fan, Y. Wang, R. Li, X. Zhang, F. Li, J. Alloys Compd. 2023, 955, 170199.
- 50L. Cui, J. Hao, Y. Zhang, X. Kang, J. Zhang, X.-Z. Fu, J.-L. Luo, J Colloid Interface Sci. 2023, 650, 603–612.
- 51X. Li, X. Yang, L. Liu, H. Zhao, Y. Li, H. Zhu, Y. Chen, S. Guo, Y. Liu, Q. Tan, ACS Catal. 2021, 11, 7450–7459.
- 52X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei, D. Wu, J. Mater. Chem. A 2019, 7, 2524–2528.
- 53M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263–275.
- 54T. Manyepedza, J. M. Courtney, A. Snowden, C. R. Jones, N. V. Rees, J. Phys. Chem. C 2022, 126, 17942–17951.
- 55R. Li, J. Liang, T. Li, L. Yue, Q. Liu, Y. Luo, M. S. Hamdy, Y. Sun, X. Sun, Chem. Commun. 2022, 58, 2259–2278.
- 56M. Szkoda, D. Roda, M. Skorupska, R. Glazer, A. Ilnicka, Sci. Rep. 2024, 14, 17255.
- 57S. Kamila, B. Mohanty, A. K. Samantara, P. Guha, A. Ghosh, B. Jena, P. V. Satyam, B. Mishra, B. K. Jena, Sci. Rep. 2017, 7, 8378.
- 58X. Zhao, X. Zhang, Z. Xue, W. Chen, Z. Zhou, T. Mu, J. Mater. Chem. A 2019, 7, 27417–27422.
- 59T. Ye, H. Li, T. Xiao, Z. Sun, ChemSusChem 2024, 17, e202400448.
- 60T. Ye, K. Ba, X. Y. Yang, T. S. Xiao, Y. Y. Sun, H. Q. Liu, C. Tang, B. H. Ge, P. Zhang, T. Duan, Z. Z. Sun, Chem. Eng. J. 2023, 452, 139515.
- 61Y. Sun, S. Ding, B. Xia, J. Duan, M. Antonietti, S. Chen, Angew. Chem. Int. Ed. 2022, 61, e202115198.
- 62X. Liu, H. Wang, W. Li, J. Chen, J. Fang, X. Yan, S. Mi, S. Hong, M. Lei, X. Yin, ACS Appl. Energy Mater. 2022, 5, 12991–12998.
- 63B. Singh, M. B. Gawande, A. D. Kute, R. S. Varma, P. Fornasiero, P. McNeice, R. V. Jagadeesh, M. Beller, R. Zbořil, Chem. Rev. 2021, 121, 13620–13697.
- 64Z. Li, D. Wang, Y. Wu, Y. Li, Natl. Sci. Rev. 2018, 5, 673–689.
- 65S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang, Y. Li, Chem. Rev. 2020, 120, 11900–11955.
- 66Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2018, 2, 1242–1264.
- 67N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Electrochem. Energy Rev. 2019, 2, 539–573.
- 68A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65–81.
- 69L. Liu, A. Corma, Nat. Rev. Mater. 2021, 6, 244–263.
- 70L. Wang, Z. Wei, Z. Sun, L. Zhu, Y. Gao, Z. Chen, S. Li, W. Chen, J. Mater. Chem. A 2024, 12, 11749–11770.
- 71O. Y. Bisen, A. K. Yadav, B. Pavithra, K. K. Nanda, Chem. Eng. J. 2022, 449, 137705.
- 72W. Liu, L. Han, H.-T. Wang, X. Zhao, J. A. Boscoboinik, X. Liu, C.-W. Pao, J. Sun, L. Zhuo, J. Luo, Nano Energy 2020, 77, 105078.
- 73X. Li, Y. Yang, Q. Ding, Y. Wang, Sustainable Energy Fuels 2024.
- 74Y. He, Y. Jia, B. Yu, Y. Wang, H. Li, Y. Liu, Q. Tan, Small 2023, 19, 2206478.
- 75L. Li, W. Yu, W. Gong, H. Wang, C.-L. Chiang, Y. Lin, J. Zhao, L. Zhang, J.-M. Lee, G. Zou, Appl. Catal. B: Environ. 2023, 321, 122038.
- 76L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191.
- 77X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, Adv. Energy Mater. 2018, 8, 1801357.
- 78J. Chen, C. Zhang, M. Huang, J. Zhang, J. Zhang, H. Liu, G. Wang, R. Wang, Appl. Catal. B: Environ. 2021, 285, 119810.
- 79Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang, H. Zhao, Adv. Energy Mater. 2019, 9, 1803935.
- 80Y. Guohua, L. Nan, in E3S Web of Conferences, Vol. 245, EDP Sciences, 2021, 03022.
- 81H. Su, L. Chen, Y. Chen, R. Si, Y. Wu, X. Wu, Z. Geng, W. Zhang, J. Zeng, Angew. Chem. Int. Ed. 2020, 59, 20411–20416.
- 82J. Zheng, S. Wu, L. Lu, C. Huang, P.-L. Ho, A. Kirkland, T. Sudmeier, R. Arrigo, D. Gianolio, S. C. E. Tsang, Chem. Sci. 2021, 12, 688–695.
- 83L. Niu, D. Wang, K. Xu, W. Hao, L. An, Z. Kang, Z. Sun, Nano Res. 2021, 1–7.
- 84J. Li, S. Chen, F. Quan, G. Zhan, F. Jia, Z. Ai, L. Zhang, Chem 2020, 6, 885–901.
- 85C. V. S. Almeida, L. H. Mascaro, Electrochim. Acta 2024, 476, 143680.
- 86Y. Seong, S. Kweon, J. H. Shim, Energy Fuels 2023, 37, 15967–15975.
- 87X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu, B. Zhang, Chem. Eng. J. 2021, 403, 126269.
- 88X. Lu, H. Song, J. Cai, S. Lu, Electrochem. Commun. 2021, 129, 107094.
- 89K. Kim, A. Zagalskaya, J. L. Ng, J. Hong, V. Alexandrov, T. A. Pham, X. Su, Nat. Commun. 2023, 14, 823.
- 90J. Li, Y. Zhang, C. Liu, L. Zheng, E. Petit, K. Qi, Y. Zhang, H. Wu, W. Wang, A. Tiberj, Adv. Funct. Mater. 2022, 32, 2108316.
- 91G. Zhang, F. Wang, K. Chen, J. Kang, K. Chu, Adv. Funct. Mater. 2024, 34, 2305372.
- 92J. Chen, Y. Kang, W. Zhang, Z. Zhang, Y. Chen, Y. Yang, L. Duan, Y. Li, W. Li, Angew. Chem. Int. Ed. 2022, 61, e202203022.
- 93J. Wu, S. Wang, R. Ji, D. Kai, J. Kong, S. Liu, W. Thits, art, arn, B. H. Tan, M. H. Chua, J. Xu, X. J. Loh, Q. Yan, Q. Zhu, ACS Nano 2024, 18, 20934–20956.
- 94L. Jiang, X. Bai, X. Zhi, K. Davey, Y. Jiao, ESS Catal. 2024 Doi: 10.1039/D4EY00197D.
- 95T. Wu, M. M. Melander, K. Honkala, ACS Catal. 2022, 12, 2505–2512.
- 96K. Yang, M. Koepf, V. Artero, Chem. Commun. 2020, 56, 13975–13978.
- 97L. M. Azofra, C. Sun, L. Cavallo, D. R. MacFarlane, Chem. Eur. J. 2017, 23, 8275–8279.
- 98A. Jain, M. B. Sadan, A. Ramasubramaniam, J. Phys. Chem. C 2021, 125, 19980–19990.
- 99H. Zhang, C. Cui, Z. Luo, J. Phys. Chem. C 2020, 124, 6260–6266.
- 100K. Xie, F. Wang, F. Wei, J. Zhao, S. Lin, J. Phys. Chem. C 2022, 126, 5180–5188.
- 101L. Chen, Y. Zhou, Y. Rao, M. Qin, B. Gong, W. Zhang, Z. Li, J: Phys. Chem. C 2022, 126, 9352–9360.
- 102F. Wen, S. Liu, X. Huang, L. Pang, C. Li, H. Liu, Langmuir 2024, 40, 12207–12215.
- 103L. Yang, F. Chen, E. Song, Z. Yuan, B. Xiao, ChemPhysChem 2020, 21, 1235–1242.
- 104X. Zhai, L. Li, X. Liu, Y. Li, J. Yang, D. Yang, J. Zhang, H. Yan, G. Ge, Nanoscale 2020, 12, 10035–10043.
- 105J. Chen, Y. Kang, W. Zhang, Z. Zhang, Y. Chen, Y. Yang, L. Duan, Y. Li, W. Li, Angew. Chem. Int. Ed. 2022, 61, e202203022.
- 106M. Cheng, C. Xiao, Y. Xie, Adv. Mater. 2021, 33, 2007891.
- 107M. I. Ahmed, D. B. Hibbert, C. Zhao, Green Energy Environ. 2023, 8, 1567–1595.
- 108B. Liu, C. Ma, D. Liu, S. Yan, ChemElectroChem 2021, 8, 3030–3039.
- 109S. Ghoshal, A. Ghosh, P. Roy, B. Ball, A. Pramanik, P. Sarkar, ACS Catal. 2022, 12, 15541–15575.
- 110J. Chen, H. Cheng, L. Ding, H. Wang, Mater. Chem. Front. 2021, 5, 5954.
- 111H. Cheng, P. Cui, F. Wang, L. Ding, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15541–15547.
- 112G. Centi, G. Perathoner, Green. Chem. 2024, 26, 15–41.