A Nonlinear Optically Active Bismuth–Camphorate Coordination Polymer
Sérgio M. F. Vilela
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
These authors contributed to this manuscript equally.Search for more papers by this authorArtem A. Babaryk
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
These authors contributed to this manuscript equally.Search for more papers by this authorRim Jaballi
Laboratory of Physical-Chemistry of Solid State University of Sfax, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
Search for more papers by this authorFabrice Salles
Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS-UM-ENSCM, Faculty of Science of Sfax, Université de Montpellier, Montpellier Cedex 05, France
Search for more papers by this authorMarta E. G. Mosquera
Departamento de Química Orgánica y Química Inorgánica, Faculty of Science of Sfax, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
Search for more papers by this authorZakaria Elaoud
Laboratory of Physical-Chemistry of Solid State University of Sfax, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
Search for more papers by this authorStijn Van Cleuvenbergen
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
Search for more papers by this authorThierry Verbiest
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
Search for more papers by this authorCorresponding Author
Patricia Horcajada
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
E-mail: [email protected]
Search for more papers by this authorSérgio M. F. Vilela
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
These authors contributed to this manuscript equally.Search for more papers by this authorArtem A. Babaryk
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
These authors contributed to this manuscript equally.Search for more papers by this authorRim Jaballi
Laboratory of Physical-Chemistry of Solid State University of Sfax, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
Search for more papers by this authorFabrice Salles
Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS-UM-ENSCM, Faculty of Science of Sfax, Université de Montpellier, Montpellier Cedex 05, France
Search for more papers by this authorMarta E. G. Mosquera
Departamento de Química Orgánica y Química Inorgánica, Faculty of Science of Sfax, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
Search for more papers by this authorZakaria Elaoud
Laboratory of Physical-Chemistry of Solid State University of Sfax, Faculty of Science of Sfax, University of Sfax, Sfax, Tunisia
Search for more papers by this authorStijn Van Cleuvenbergen
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
Search for more papers by this authorThierry Verbiest
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
Search for more papers by this authorCorresponding Author
Patricia Horcajada
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
Advanced Porous Materials Unit (APMU), IMDEA Energy, Avda. Ramón de la Sagra 3, E-28938 Móstoles, Madrid, Spain
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Abstract
The novel 2D bismuth–camphorate IEF-1, formulated as [Bi(L)(HL)] (where H2L = camphoric acid), has been successfully isolated as large single crystals and easily scaled up by hydrothermal synthesis. The crystalline structure of IEF-1 was unveiled by single-crystal X-ray diffraction, in the monoclinic space group P21, and fully characterized by using several standard solid-state techniques. IEF-1 material is thermally stable up to ca. 240 °C without any visible structural change. In addition, the study of the nonlinear optical (NLO) properties of IEF-1 by second harmonic generation (SHG) microscopy evidenced that IEF-1 is noncentrosymmetric and has a more intensive blue component that may be explained by the ligand to metal charge transfer behavior.
Supporting Information
Filename | Description |
---|---|
ejic201800197-sup-0001-SupMat.pdf591.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z.-J. Li, J. Yao, Q. Tao, L. Jiang and T.-B. Lu, Inorg. Chem., 2013, 52, 11694–11696.
- 2M. Yadav, A. Bhunia, S. K. Jana and P. W. Roesky, Inorg. Chem., 2016, 55, 2701–2708.
- 3L. Z. Z. Chen, Q. Ji, X. G. Wang, Q. J. Pan, X. X. Caoa and G. C. Xu, CrystEngComm, 2017, 19, 5907–5914.
- 4L. Guan and Y. Wang, J. Coord. Chem., 2016, 69, 947–956.
- 5Y. Peng, X. He, M.-X. Li, Q. Ye, J.-Z. Ge, Z.-X. Wang, S.-R. Zhu, M. Shao and H.-L. Cai, J. Mater. Chem., 2012, 22, 2398–2400.
10.1039/c2jm14961c Google Scholar
- 6Q. Ye, Y.-H. Li, Y.-M. Song, X.-F. Huang, R.-G. Xiong and Z. Xue, Inorg. Chem., 2005, 44, 3618–3625.
- 7M.-J. Tsai and J.-Y. Wu, Polymers (Basel), 2017, 9, 661.
- 8L. Qin, Z.-J. Wang, T. Wang, H.-G. Zheng and J.-X. Chen, Dalton Trans., 2014, 43, 12528–12535.
- 9D. Dang, B. An, Y. Bai, G. Zheng and J. Niu, Chem. Commun., 2013, 49, 2243–2245.
- 10H. Reinsch and D. De Vos, Microporous Mesoporous Mater., 2014, 200, 311–316.
- 11“Physicochemical and Biological Properties of Camphoric Acid” can be found under https://www.henriettes-herb.com/eclectic/bpc1911/acidum-camp.html, n.d.
- 12S.-U. Lee, N. S. Kang, Y. K. Min and S. H. Kim, Amino Acids, 2010, 38, 85–93.
- 13Z.-F. Chen and H. Liang, Anti-Cancer Agents Med. Chem., 2010, 10, 412–423.
- 14P. C. Andrews, V. L. Blair, R. L. Ferrero, L. Richard, P. C. Junk and A. I. Kumar, Chem. Commun., 2013, 49, 2870–2872.
- 15A. Loh, Y. C. Ong, V. L. Blair, L. Kedzierski and P. C. Andrews, J. Biol. Inorg. Chem., 2015, 20, 1193–1203.
- 16A. N. Yankin, N. V. Nosova, V. L. Gein and M. V. Tomilov, Russ. J. Gen. Chem., 2015, 85, 844–850.
- 17M. Savage, S. Yang, M. Suyetin, E. Bichoutskaia, W. Lewis, A. J. Blake, S. A. Barnett and M. Schröder, Chem. Eur. J., 2014, 20, 8024–8029.
- 18H. Sun and P. J. Sadler in Met. II. Top. Biol. Inorg. Chem. (Eds.: M. J. Clarke and P. J. Sadler), Springer, Berlin, 1999, pp. 159–185.
- 19D. Y. Graham and S.-Y. Lee, Gastroenterol. Clin. North Am., 2015, 44, 537–563.
- 20S. Quaresma, V. André, A. Fernades and M. T. Duarte, Inorg. Chim. Acta, 2017, 455, 309–318.
- 21M. Feyand, M. Koppen and G. Friedrichs, Chem. Eur. J., 2013, 19, 12537–12546.
- 22B. J. Deibert, E. Velasco, W. Liu, S. J. Teat, W. P. Lustig and J. Li, Cryst. Growth Des., 2016, 16, 4178–4182.
- 23O. Toma, M. Allain, F. Meinardi, A. Forni, C. Botta and N. Mercier, Angew. Chem. Int. Ed., 2016, 55, 7998–8002;
Angew. Chem., 2016, 128, 8130.
10.1002/ange.201602602 Google Scholar
- 24S. R. Sushrutha and S. Natarajan, Cryst. Growth Des., 2013, 13, 1743–1751.
- 25M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. De Vos and N. Stock, Angew. Chem. Int. Ed., 2012, 51, 10373–10376;
Angew. Chem., 2012, 124, 10519.
10.1002/ange.201204963 Google Scholar
- 26G. Wang, Y. Liu, B. Huang, X. Qin, X. Zhang and Y. Dai, Dalton Trans., 2015, 44, 16238–16241.
- 27A. C. Wibowo, M. D. Smith, J. Yeon, P. S. Halasyamani and H. Loye, J. Solid State Chem., 2012, 195, 94–100.
- 28N. Stock and S. Biswas, Chem. Rev., 2012, 112, 933–969.
- 29C. M. Zakaria, G. Ferguson, A. J. Loughc and C. Glidewell, Acta Crystallogr., Sect. B Struct. Sci., 2003, 59, 118–131.
- 30I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B Struct. Sci., 1985, 41, 244–247.
- 31F. D. Hardcastle and I. E. Wachs, J. Solid State Chem., 1992, 97.
- 32S. Parsons, H. D. Flack and T. Wagner, Acta Crystallogr., Sect. B Struct. Sci. 2013, B69, 249–259.
10.1107/S2052519213010014 Google Scholar
- 33J. C. Barnes, J. D. Paton, C. S. Blyth and R. A. Howie, Acta Crystallogr., Sect. C Cryst. Struct. Commun. 1991, C47, 1888–1892.
- 34F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73–78.
- 35M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov and S. Erlish, Opt. Mater., 2001, 16, 279–290.
- 36L. Kan, J. Li, X. Luo, G. Li and Y. Liu, Inorg. Chem. Commun., 2017, 85, 70–73.
- 37B. V. Nonius, Collect, Delft, The Netherlands, 1998.
- 38R. H. Blessing, Acta Crystallogr., Sect. A, 1995, 51, 33–38.
- 39G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3–8.
- 40G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112–122.
- 41L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837–838.
- 42C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 43R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650–654.
- 44A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- 45B. Delley, J. Chem. Phys., 2000, 113, 7756–7764.
- 46J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13244.
- 47B. Delley, Int. J. Quantum Chem., 1998, 69, 423–433.