Azobis[tetrazolide]-Carbonates of the Lanthanides – Breaking the Gadolinium Break
Corresponding Author
Danny Müller
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
E-mail: [email protected]
Search for more papers by this authorChristian Knoll
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
Search for more papers by this authorAndrea Herrmann
Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
Search for more papers by this authorGökcen Savasci
Theoretical Chemistry Group, University of Munich (LMU), Butenandtstr. 7 (C), 81377 München, Germany
Search for more papers by this authorJan M. Welch
Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
Search for more papers by this authorWerner Artner
X-ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
Search for more papers by this authorJohannes Ofner
Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
Search for more papers by this authorBernhard Lendl
Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
Search for more papers by this authorGerald Giester
Department of Mineralogy and Crystallography, University of Vienna, Althanstraße 14 (UZA 2), 1090 Vienna, Austria
Search for more papers by this authorPeter Weinberger
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
Search for more papers by this authorCorresponding Author
Georg Steinhauser
Institute of Radiation Protection and Radioecology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Danny Müller
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
E-mail: [email protected]
Search for more papers by this authorChristian Knoll
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
Search for more papers by this authorAndrea Herrmann
Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
Search for more papers by this authorGökcen Savasci
Theoretical Chemistry Group, University of Munich (LMU), Butenandtstr. 7 (C), 81377 München, Germany
Search for more papers by this authorJan M. Welch
Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
Search for more papers by this authorWerner Artner
X-ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
Search for more papers by this authorJohannes Ofner
Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
Search for more papers by this authorBernhard Lendl
Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
Search for more papers by this authorGerald Giester
Department of Mineralogy and Crystallography, University of Vienna, Althanstraße 14 (UZA 2), 1090 Vienna, Austria
Search for more papers by this authorPeter Weinberger
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
Search for more papers by this authorCorresponding Author
Georg Steinhauser
Institute of Radiation Protection and Radioecology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
Rare earth element (REE) compounds with tetrazole-derivative anions have been prime examples of the “gadolinium break” by showing a structural discontinuity along the series after Gd. Here we present a series of REE compounds with azobis[tetrazolide] ligands that exhibit isotypic crystal structures (from Y and La to Yb) by introducing a bridging carbonato ligand. They hence “overcome” the Gd break.
Abstract
A series of rare earth element (REE) mixed-anion 5,5′-azobis(1H-tetrazol-1-ide)-carbonate ([REE2(ZT)2CO3(H2O)10]·2H2O; REE = lanthanides plus yttrium) coordination compounds were synthesized, characterized, and analyzed. Syntheses by simple metathesis reactions under a CO2 atmosphere were carried out at ambient (La–Gd and Ho) and elevated pressures (55 bar; Tb, Dy, Er, Tm, Yb, and Y). The resulting crystalline materials were characterized principally by single-crystal X-ray diffraction and vibrational spectroscopy (infrared and Raman). All materials are structurally isotypic, crystallizing in the space group C2/c and show nearly identical spectroscopic properties for all the elements investigated. Cell parameters, bond lengths, and bond angles differ marginally, revealing only a slight variation coinciding with the lanthanide (Ln) contraction, that is, the change in the ionic radii of the trivalent rare earth elements. The herein reported series of rare earth element azobis[tetrazolide]-carbonates represents a remarkable exception as they are a series of isotypic REE coordination compounds with tetrazolide-derived ligands unaffected by the “gadolinium break”.
Supporting Information
Filename | Description |
---|---|
ejic201800218-sup-0001-SupMat.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. H. Spedding, M. J. Pikal and B. O. Ayers, J. Phys. Chem., 1966, 70, 2440–2449.
- 2F. H. Spedding and K. C. Jones, J. Phys. Chem., 1966, 70, 2450–2455.
- 3a) D. H. Templeton and C. H. Dauben, J. Am. Chem. Soc., 1954, 76, 5237–5239; b) A. B. Blake, J. Chem. Educ., 1981, 58, 393.
- 4H. I. Y. Suzuki, N. Itho and Y. Ikegami in New Frontiers in Rare Earth Science and Applications (Ed.: X. Guangxian), Elsevier, Beijing, 1985, pp. 233–240.
10.1016/B978-0-12-767661-6.50063-1 Google Scholar
- 5G. Schwarzenbach and R. Gut, Helv. Chim. Acta, 1956, 39, 1589–1599.
- 6T. Fujiwara, H. Mori, Y. Mochizuki, H. Tatewaki and E. Miyoshi, THEOCHEM, 2010, 949, 28–35.
- 7a) A. Habenschuss and F. H. Spedding, J. Chem. Phys., 1979, 70, 2797–2806; b) A. Habenschuss and F. H. Spedding, J. Chem. Phys., 1979, 70, 3758–3763; c) A. Habenschuss and F. H. Spedding, J. Chem. Phys., 1980, 73, 442–450.
- 8a) D. F. Peppard, G. W. Mason and S. Lewey, J. Inorg. Nucl. Chem., 1969, 31, 2271–2272; b) S. Sinha in Structure and Bonding, Springer Verlag, Berlin, vol. 25, 1976, 30, p. 1.
- 9a) I. Persson, P. D′Angelo, S. De Panfilis, M. Sandström and L. Eriksson, Chem. Eur. J., 2008, 14, 3056–3066; b) M. J. Polinski, K. A. Pace, J. T. Stritzinger, J. Lin, J. N. Cross, S. K. Cary, S. M. V. Cleve, E. V. Alekseev and T. E. Albrecht-Schmitt, Chem. Eur. J., 2014, 20, 9892–9896; c) M. A. Silver, S. K. Cary, A. J. Garza, R. E. Baumbach, A. A. Arico, G. A. Galmin, K.-W. Chen, J. A. Johnson, J. C. Wang, R. J. Clark, A. Chemey, T. M. Eaton, M. L. Marsh, K. Seidler, S. S. Galley, L. van de Burgt, A. L. Gray, D. E. Hobart, K. Hanson, S. M. Van Cleve, F. Gendron, J. Autschbach, G. E. Scuseria, L. Maron, M. Speldrich, P. Kögerler, C. Celis-Barros, D. Páez-Hernández, R. Arratia-Pérez, M. Ruf and T. E. Albrecht-Schmitt, J. Am. Chem. Soc., 2017, 139, 13361–13375.
- 10S. Rigault and C. Piguet, J. Am. Chem. Soc., 2000, 122, 9304–9305.
- 11T. A. Hopkins, D. H. Metcalf and F. S. Richardson, Inorg. Chem., 1998, 37, 1401–1412.
- 12S. P. Babailov, I. P. Chuikov and A. I. Kruppa, Inorg. Chim. Acta, 2016, 439, 117–122.
- 13a) S. A. Cotton, V. Franckevicius, M. F. Mahon, L. L. Ooi, P. R. Raithby and S. J. Teat, Polyhedron, 2006, 25, 1057–1068; b) Y. Fukuda, A. Nakao and K. Hayashi, J. Chem. Soc., Dalton Trans., 2002, 527–533; c) M. Stojanovic, N. J. Robinson, X. Chen, P. A. Smith and R. E. Sykora, J. Solid State Chem., 2010, 183, 933–939; d) D. Parker, H. Puschmann, A. S. Batsanov and K. Senanayake, Inorg. Chem., 2003, 42, 8646–8651; e) M. Seitz, A. G. Oliver and K. N. Raymond, J. Am. Chem. Soc., 2007, 129, 11153–11160; f) J. Harrowfield, D. Kepert, J. Patrick and A. White, Aust. J. Chem., 1983, 36, 483–492; g) A. Chatterjee, E. N. Maslen and K. J. Watson, Acta Crystallogr., Sect. B, 1988, 44, 381–386; h) A. Abbasi, P. Lindqvist-Reis, L. Eriksson, D. Sandström, S. Lidin, I. Persson and M. Sandström, Chem. Eur. J., 2005, 11, 4065–4077; i) C. O. Paiva Santos, E. E. Castellano, L. C. Machado and G. Vicentini, Inorg. Chim. Acta, 1985, 110, 83–86; j) D. Parker, R. S. Dickins, H. Puschmann, C. Crossland and J. A. K. Howard, Chem. Rev., 2002, 102, 1977–2010.
- 14J. M. Welch, D. Müller, C. Knoll, M. Wilkovitsch, G. Giester, J. Ofner, B. Lendl, P. Weinberger and G. Steinhauser, Angew. Chem. Int. Ed., 2017, 56, 13264–13269;
Angew. Chem., 2017, 129, 13448–13453.
10.1002/ange.201703971 Google Scholar
- 15S. A. Cotton and P. R. Raithby, Coord. Chem. Rev., 2017, 340, 220–231.
- 16a) E. S. Andreiadis, R. Demadrille, D. Imbert, J. Pecaut and M. Mazzanti, Chem. Eur. J., 2009, 15, 9458–9476; b) L. Liang, G. Peng, L. Ma, L. Sun, H. Deng, H. Li and W. Li, Cryst. Growth Des., 2012, 12, 1151–1158; c) D. D′Alessio, S. Muzzioli, B. W. Skelton, S. Stagni, M. Massi and M. I. Ogden, Dalton Trans., 2012, 41, 4736; d) M. Giraud, E. S. Andreiadis, A. S. Fisyuk, R. Demadrille, D. Imbert and M. Mazzanti, Inorg. Chem., 2008, 47, 3952–3954; e) Y.-B. Lu, X.-M. Jiang, S.-D. Zhu, Z.-Y. Du, C.-M. Liu, Y.-R. Xie and L.-X. Liu, Inorg. Chem., 2016, 55, 3738–3749.
- 17a) A. Facchetti, A. Abbotto, L. Beverina, S. Bradamante, P. Mariani, C. L. Stern, T. J. Marks, A. Vacca and G. A. Pagani, Chem. Commun., 2004, 1770–1771; b) F. He, M.-L. Tong, X.-L. Yu and X.-M. Chen, Inorg. Chem., 2005, 44, 559–565; c) X.-Q. Zhang, Q. Yu, H.-D. Bian, S.-P. Yan, D.-Z. Liao, W. Gu and H. Liang, Aust. J. Chem., 2008, 61, 303; d) R.-Y. Chen, D. Tian, Y.-W. Li, Y.-B. Lv, H.-W. Sun, Z. Chang and X.-H. Bu, RSC Adv., 2015, 5, 24655–24660.
- 18a) G. Steinhauser, G. Giester, N. Leopold, C. Wagner and M. Villa, Helv. Chim. Acta, 2009, 92, 2038–2051; b) G. Steinhauser, G. Giester, N. Leopold, C. Wagner, M. Villa and A. Musilek, Helv. Chim. Acta, 2010, 93, 183–202.
- 19a) G. Steinhauser, G. Giester, C. Wagner, N. Leopold, J. H. Sterba, B. Lendl and M. Bichler, Helv. Chim. Acta, 2009, 92, 1371–1384; b) C. Knoll, D. Müller, G. Giester, J. Ofner, B. Lendl, P. Weinberger and G. Steinhauser, New J. Chem., 2013, 37, 3840.
- 20P. J. Eulgem, A. Klein, N. Maggiarosa, D. Naumann and R. W. H. Pohl, Chem. Eur. J., 2008, 14, 3727–3736.
- 21A. Hammerl, G. Holl, T. M. Klapötke, P. Mayer, H. Nöth, H. Piotrowski and M. Warchhold, Eur. J. Inorg. Chem., 2002, 834–845.
- 22W. M. Haynes (Ed.), in: Handbook of Chemistry and Physics, CRC Press, Boca Raton, 97th ed., 2016.
- 23a) R. Janicki, P. Starynowicz and A. Mondry, Eur. J. Inorg. Chem., 2011, 3601–3616; b) S. K. Langley, B. Moubaraki and K. S. Murray, Inorg. Chem., 2012, 51, 3947–3949; c) A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon and S. R. Batten, Chem. Eur. J., 2009, 15, 5203–5207.
- 24a) A. Trzesowska, R. Kruszynski and T. J. Bartczak, Acta Crystallogr., Sect. B, 2004, 60, 174–178; b) A. Trzesowska, R. Kruszynski and T. J. Bartczak, Acta Crystallogr., Sect. B, 2005, 61, 429–434; c) A. Trzesowska, R. Kruszynski and T. J. Bartczak, Acta Crystallogr., Sect. B, 2006, 62, 745–753.
- 25a) P. S. Devi and M. S. Rao, J. Anal. Appl. Pyrolysis, 1992, 22, 187–195; b) G. Socrates, in: Infrared and Raman Characteristic Group Frequencies, 3rd ed., John Wiley & Sons, Chichester, 2001; c) A. W. A. M. van der Heijden, V. Bellière, L. E. Alonso, M. Daturi, O. V. Manoilova and B. M. Weckhuysen, J. Phys. Chem. B, 2005, 109, 23993–24001; d) K. Nakamoto, in: Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., John Wiley & Sons, Chichester, 1986.
- 26A. Ben Ali, V. Maisonneuve, S. Houlbert, G. Silly, J. Y. Buzaré and M. Leblanc, Solid State Sci., 2004, 6, 1237–1243.
- 27J. C. Lavalley, Catal. Today, 1996, 27, 377–401.
- 28C. Huang, in: Rare Earth Coordination Chemistry, John Wiley & Sons, Singapore, 2010.
10.1002/9780470824870 Google Scholar
- 29a) S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989–2009; b) M. Bursch, A. Hansen and S. Grimme, Inorg. Chem., 2017, 56, 12485–12491.
- 30a) T. M. Klapötke, B. Krumm, F. X. Steemann and G. Steinhauser, Saf. Sci., 2010, 48, 28–34; b) G. Steinhauser, J. Evers, S. Jakob, T. M. Klapötke and G. Oehlinger, Gold Bull., 2008, 41, 305–317.
- 31G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112–122.