Easy and Green Route towards Nanostructured ZnO as an Active Sensing Material with Unexpected H2S Dosimeter-Type Behaviour
Stefano Diodati
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131- Padova and INSTM, UdR di Padova, Italy
Search for more papers by this authorJörg Hennemann
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Institut für Angewandte Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
Search for more papers by this authorFernando Fresno
Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
Search for more papers by this authorStefano Gialanella
Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I, -38123 Trento, Italy
Search for more papers by this authorPaolo Dolcet
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131- Padova and INSTM, UdR di Padova, Italy
Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76133 Karlsruhe, Germany
Search for more papers by this authorUrška Lavrenčič Štangar
Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
Search for more papers by this authorCorresponding Author
Bernd M. Smarsly
- [email protected]
- https://www.uni-giessen.de/faculties/f08/departments/physchem/ag-prof-dr-bernd-smarsly
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
E-mail: [email protected]
https://www.uni-giessen.de/faculties/f08/departments/physchem/ag-prof-dr-bernd-smarsly
Search for more papers by this authorCorresponding Author
Silvia Gross
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131- Padova and INSTM, UdR di Padova, Italy
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
E-mail: [email protected]
https://www.uni-giessen.de/faculties/f08/departments/physchem/ag-prof-dr-bernd-smarsly
Search for more papers by this authorStefano Diodati
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131- Padova and INSTM, UdR di Padova, Italy
Search for more papers by this authorJörg Hennemann
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Institut für Angewandte Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
Search for more papers by this authorFernando Fresno
Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
Search for more papers by this authorStefano Gialanella
Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I, -38123 Trento, Italy
Search for more papers by this authorPaolo Dolcet
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131- Padova and INSTM, UdR di Padova, Italy
Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76133 Karlsruhe, Germany
Search for more papers by this authorUrška Lavrenčič Štangar
Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
Search for more papers by this authorCorresponding Author
Bernd M. Smarsly
- [email protected]
- https://www.uni-giessen.de/faculties/f08/departments/physchem/ag-prof-dr-bernd-smarsly
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
E-mail: [email protected]
https://www.uni-giessen.de/faculties/f08/departments/physchem/ag-prof-dr-bernd-smarsly
Search for more papers by this authorCorresponding Author
Silvia Gross
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131- Padova and INSTM, UdR di Padova, Italy
Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
E-mail: [email protected]
https://www.uni-giessen.de/faculties/f08/departments/physchem/ag-prof-dr-bernd-smarsly
Search for more papers by this authorGraphical Abstract
Nanostructured ZnO was synthesised through a quick, easy, low-temperature and green hydrothermal route, showing an interesting gas-sensing behaviour. At an operation temperature of 450 °C, the material exhibits a significant response to H2S gas exposure as expected for a semiconducting n-type gas sensor. However, at an operating temperature of 150 °C the material shows gas dosimeter-type behaviour.
Abstract
Nanostructured ZnO particles were prepared through a straightforward, quick and low-temperature synthesis route involving coprecipitation of the metal precursor salts with oxalic acid, followed by hydrothermal treatment at 135 or 160 °C. The synthesised nanostructured powders were thoroughly characterised by a wide array of analytical techniques from the morphological (Scanning Electron Microscopy -SEM-, Transmission Electron Microscopy -TEM-, Energy-dispersive X-ray Spectroscopy -EDXS-), structural (Powder X-ray Diffraction -PXRD-, Selected Area Electron Diffraction -SAED-), compositional (X-ray Photoelectron Spectroscopy -XPS-) and physical (thermal stability) point of view. As far as functional applications are concerned, the powders were tested as gas sensor materials for H2S detection. Thereby these ZnO particles showed unexpected gas dosimeter behaviour at 150 °C. Based on these observations and on a comparison with literature a new model for the interaction of ZnO nanostructures with H2S is proposed.
Supporting Information
Filename | Description |
---|---|
ejic201801334-sup-0001-SupMat.pdf259.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Mirzaei and M. Darroudi, Ceram. Int., 2017, 43, 907–914.
- 2H. Morkoç and Ü. Özgür, in: Zinc Oxide: Fundamentals, Materials and Device Technology, Vol. Weinheim, Wiley VCH, 2009.
- 3T. Kim and T. Hyeon, Nanotechnology, 2014, 25, 012001.
- 4S. Chandra, K. C. Barick and D. Bahadur, Adv. Drug Delivery Rev., 2011, 63, 1267–1281.
- 5Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys., 2005, 98, 041301.
- 6Z. L. Wang, J. Phys. Condens. Matter, 2004, 16, R829–R858.
- 7A. B. Djurisic and Y. H. Leung, Small, 2006, 2, 944–961.
- 8J. Gomez and O. Tigli, J. Mater. Sci., 2013, 48, 612–624.
- 9J. Xu, Z. Chen, J. A. Zapien, C.-S. Lee and W. Zhang, Adv. Mater., 2014, 26, 5337–5367.
- 10S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L. A. Boatner, J. Appl. Phys., 2003, 93, 1–13.
- 11P. H. Miller, Phys. Rev., 1941, 60, 890–895.
- 12J. Anderson and G. V. d. W. Chris, Rep. Prog. Phys., 2009, 72, 126501.
- 13Y. Hou, Z. Mei and X. Du, J. Phys. D, 2014, 47, 283001.
- 14R. Suryanarayanan, in: ZnO Nanocrystals and Allied Materials, Vol. 180 (Eds.: M. S. R. Rao and T. Okada), Springer India, 2014, pp. 289–307.
- 15Y. Xiao, Z. Pan, X. Tian, H. Zhang, X. Zeng, C. Xiao, G. Hu and Z. Wei, Mater. Lett., 2014, 131, 94–96.
- 16D. Panda and T.-Y. Tseng, J. Mater. Sci., 2013, 48, 6849–6877.
- 17M. Inoue, N. Hasegawa, R. Uehara, N. Gokon, H. Kaneko and Y. Tamaura, Sol. Energy, 2004, 76, 309–315.
- 18S. K. Kansal, A. H. Ali, S. Kapoor and D. W. Bahnemann, Sep. Purif. Technol., 2011, 80, 125–130.
- 19Y. Y. Zhang, M. K. Ram, E. K. Stefanakos and D. Y. Goswami, J. NanoMater., 2012, 2012, 22.
- 20R. Kumar, O. Al-Dossary, G. Kumar and A. Umar, Nano-Micro Lett., 2015, 7, 97–120.
- 21S. Leonardi, Chemosensors, 2017, 5, 17.
- 22G. Heiland, Z. Phys., 1957, 148, 28–33.
- 23G. Heiland, Sensor. Actuator., 1981, 2, 343–361.
- 24A. R. Raju and C. N. R. Rao, Sensor. Actuat. B-Chem., 1991, 3, 305–310.
- 25J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Yan and L. Vayssieres, Nanotechnology, 2006, 17, 4995.
- 26M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi and J. G. Park, Sensor. Actuat. B - Chem., 2009, 138, 168–173.
- 27S. K. Pandey, K.-H. Kim and K.-T. Tang, TrAC Trends Anal. Chem., 2012, 32, 87–99.
- 28A. Wellinger, A. Lindberg, Biogas upgrading and utilization. Task 24: energy from biological conversion of organic waste and IEA Bioenergy, 1999,
- 29D. Schieder, P. Quicker, R. Schneider, H. Winter, S. Prechtl and M. Faulstich, Water Sci. Technol., 2003, 48, 209–212.
- 30S. Pipatmanomai, S. Kaewluan and T. Vitidsant, Appl. Energy, 2009, 86, 669–674.
- 31H. Huang, P. Xu, D. Zheng, C. Chen and X. Li, J. Mater. Chem. A, 2015, 3, 6330–6339.
- 32I. Marr, K. Neumann, M. Thelakkat and R. Moos, Appl. Phys. Lett., 2014, 105, 133301.
- 33I. Marr, A. Groß and R. Moos, J. Sens. Sens. Syst., 2014, 3, 29–46.
10.5194/jsss-3-29-2014 Google Scholar
- 34C. Klingshirn, Phys. Status Solidi B, 2007, 244, 3027–3073.
- 35P. Dolcet, F. Latini, M. Casarin, A. Speghini, E. Tondello, C. Foss, S. Diodati, L. Verin, A. Motta and S. Gross, Eur. J. Inorg. Chem., 2013, 2013, 2291–2300.
- 36L. Spanhel, J. Sol-Gel Sci. Technol., 2006, 39, 7–24.
- 37L. Spanhel and M. A. Anderson, J. Am. Chem. Soc., 1991, 113, 2826–2833.
- 38Z. Chen, G. Zhan, Y. Wu, X. He and Z. Lu, J. Alloys Compd., 2014, 587, 692–697.
- 39E. J. Donahue, A. Roxburgh and M. Yurchenko, Mater. Res. Bull., 1998, 33, 323–329.
- 40A. Famengo, S. Anantharaman, G. Ischia, V. Causin, M. M. Natile, C. Maccato, E. Tondello, H. Bertagnolli and S. Gross, Eur. J. Inorg. Chem., 2009, 2009, 5017–5028.
- 41D. R. Modeshia and R. I. Walton, Chem. Soc. Rev., 2010, 39, 4303–4325.
- 42S. Diodati, P. Dolcet, M. Casarin and S. Gross, Chem. Rev., 2015, 115, 11449–11502.
- 43O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park and A. Schulte, J. Phys. Chem. C, 2010, 114, 12401–12408.
- 44W. E. Mahmoud, J. Cryst. Growth, 2010, 312, 3075–3079.
- 45A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai and X. Zhou, Sensor. Actuat. B-Chem., 2011, 158, 9–16.
- 46Y. Lu, Y. Lin, D. Wang, L. Wang, T. Xie and T. Jiang, Nano Res., 2011, 4, 1144–1152.
- 47P. K. Sharma, M. Kumar and A. C. Pandey, J. Nanopart. Res., 2011, 13, 1629–1637.
- 48C. Wu, L. Shen, H. Yu, Q. Huang and Y. C. Zhang, Mater. Res. Bull., 2011, 46, 1107–1112.
- 49E. D. Bøjesen, K. M. Ø. Jensen, C. Tyrsted, N. Lock, M. Christensen and B. B. Iversen, Cryst. Growth Des., 2014, 14, 2803–2810.
- 50X. Zhao, M. Li and X. Lou, Adv. Powder Technol., 2014, 25, 372–378.
- 51M. Salavati-Niasari, F. Davar and M. Mazaheri, J. Alloys Compd., 2009, 470, 502–506.
- 52J.-Y. Park, S.-J. Park, J.-H. Lee, C.-H. Hwang, K.-J. Hwang, S. Jin, D.-Y. Choi, S.-D. Yoon and I.-H. Lee, Mater. Lett., 2014, 121, 97–100.
- 53S. Li, Z. Wu, W. Li, Y. Liu, R. Zhuo, D. Yan, W. Jun and P. Yan, CrystEngComm, 2013, 15, 1571–1577.
- 54L. M. Gan, B. Liu, C. H. Chew, S. J. Xu, S. J. Chua, G. L. Loy and G. Q. Xu, Langmuir, 1997, 13, 6427–6431.
- 55J. Zhang, S. Liu, J. Yu and M. Jaroniec, J. Mater. Chem., 2011, 21, 14655–14662.
- 56F. J. Chen, Y. L. Cao and D. Z. Jia, Chem. Eng. J., 2013, 234, 223–231.
- 57D. Han, J. Cao, S. Yang, J. Yang, B. Wang, L. Fan, Q. Liu, T. Wang and H. Niu, Dalton Trans., 2014, 43, 11019–11026.
- 58M.-A. Einarsrud and T. Grande, Chem. Soc. Rev., 2014, 43, 2187–2199.
- 59A. Rabenau, Angew. Chem. Int. Ed. Engl., 1985, 24, 1026–1040; Angew. Chem., 1985, 97, 1017.
- 60H. Aono, H. Hirazawa, T. Naohara and T. Maehara, Appl. Surf. Sci., 2008, 254, 2319–2324.
- 61W. Bayoumi, J. Mater. Sci., 2007, 42, 8254–8261.
- 62M. Kakihana and M. Yoshimura, Bull. Chem. Soc. Jpn., 1999, 72, 1427–1443.
- 63P. A. Lessing, Am. Ceram. Soc. Bull., 1989, 68, 1002–1007.
- 64D. Segal, J. Mater. Chem., 1997, 7, 1297–1305.
- 65Q.-H. Jiang, C.-W. Nan and Z.-J. Shen, J. Am. Ceram. Soc., 2006, 89, 2123–2127.
- 66K. Byrappa and M. Yoshimura, in: Handbook of Hydrothermal Technology, Noyes Publications, Park Ridge, New Jersey, U. S. A, 2001.
- 67L. Dem′yanets, L. Li and T. Uvarova, J. Mater. Sci., 2006, 41, 1439–1444.
- 68Y. Jin, C. An, K. Tang, L. Huang and G. Shen, Mater. Lett., 2003, 57, 4267–4270.
- 69U. Schubert and N. Hüsing, in: Synthesis of inorganic materials, 2nd Ed., Wiley-VCH, Weinheim, 2005.
- 70P. Dolcet, S. Diodati, F. Zorzi, P. Voepel, C. Seitz, B. M. Smarsly, S. Mascotto, F. Nestola and S. Gross, Green Chem., 2018, 20, 2257–2268.
- 71S. Diodati, L. Pandolfo, S. Gialanella, A. Caneschi and S. Gross, Nano Res., 2014, 7, 1027–1042.
- 72J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in: Handbook of X-ray Photoelectron Spectroscopy - A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin-Elmer Corp., Eden Prarie, Minnesota, 1992.
- 73NIST XPS Database - Version 3.5; http://srdata.nist.gov/xps/.
- 74T. Wagner, C.-D. Kohl, M. Fröba and M. Tiemann, Sensors, 2006, 6, 318–323.
- 75C. Seitz, G. Beck, J. Hennemann, C. Kandzia, K. P. Hering, A. Polity, P. J. Klar, A. Paul, T. Wagner, S. Russ and B. M. Smarsly, J. Sens. Sens. Syst., 2017, 6, 163–170.
- 76J. Hennemann, C.-D. Kohl, B. M. Smarsly, T. Sauerwald, J.-M. Teissier, S. Russ and T. Wagner, Phys. Status Solidi A, 2015, 212, 1281–1288.
- 77Y. Song, E. S. Kim and A. Kapila, J. Electron. Mater., 1995, 24, 83–86.
- 78T. Wang, X. Diao and P. Ding, J. Alloys Compd., 2011, 509, 4910–4915.
- 79D. S. King and R. M. Nix, J. Catal., 1996, 160, 76–83.
- 80B. Ludi and M. Niederberger, Dalton Trans., 2013, 42, 12554–12568.
- 81D. Wang, X. Chu and M. Gong, Nanotechnology, 2007, 18, 185601.
- 82J. Kim and K. Yong, J. Phys. Chem. C, 2011, 115, 7218–7224.
- 83A. Geupel, D. Schönauer, U. Röder-Roith, D. J. Kubinski, S. Mulla, T. H. Ballinger, H. Y. Chen, J. H. Visser and R. Moos, Sensor. Actuat. B - Chem., 2010, 145, 756–761.
- 84J. Hennemann, C.-D. Kohl, B. M. Smarsly, H. Metelmann, M. Rohnke, J. Janek, D. Reppin, B. K. Meyer, S. Russ and T. Wagner, Sensor. Actuat. B - Chem., 2015, 217, 41–50.
- 85J. Hennemann, T. Sauerwald, C.-D. Kohl, T. Wagner, M. Bognitzki and A. Greiner, Phys. Status Solidi A, 2012, 209, 911–916.
- 86L. Neveux, D. Chiche, D. Bazer-Bachi, L. Favergeon and M. Pijolat, Chem. Eng. J., 2012, 181–182, 508–515.
- 87L. Lutterotti, Università degli Studi di Trento, Trento, 1998.
- 88D. Briggs and M. P. Seah, in: Practical Surface Analysis - Volume 1 - Auger and X-ray Photoelectron Spectroscopy, 2nd Ed. John Wiley & Sons, 1990.
- 89Z. G. Wang, X. T. Zu, S. Zhu and L. M. Wang, Phys. E, 2006, 35, 199–202.
- 90D. A. Shirley, Phys. Rev. B, 1972, 5, 4709–4713.
- 91J. L. Lábár, Ultramicroscopy, 2005, 103, 237–249.
- 92J. L. Lábár, Microsc. Microanal., 2008, 14, 287–295.
- 93J. L. Lábár, Microsc. Microanal., 2009, 15, 20–29.
- 94J. L. Lábár, M. Adamik, B. P. Barna, Z. Czigány, Z. Fogarassy, Z. E. Horváth, O. Geszti, F. Misják, J. Morgiel, G. Radnóczi, G. Sáfrán, L. Székely and T. Szüts, Microsc. Microanal., 2012, 18, 406–420.