Salalens and Salans Derived from 3-Aminopyrrolidine: Aluminium Complexation and Lactide Polymerisation
Luke Britton
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorDaniel Ditz
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorJames Beament
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorCorresponding Author
Paul McKeown
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Department of Chemistry, University of Bath, Bath BA2 7AY UK
E-mail: [email protected]
E-mail: [email protected]
Search for more papers by this authorHelena C. Quilter
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorKerry Riley
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorMary F. Mahon
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorCorresponding Author
Matthew D. Jones
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Department of Chemistry, University of Bath, Bath BA2 7AY UK
E-mail: [email protected]
E-mail: [email protected]
Search for more papers by this authorLuke Britton
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorDaniel Ditz
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorJames Beament
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorCorresponding Author
Paul McKeown
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Department of Chemistry, University of Bath, Bath BA2 7AY UK
E-mail: [email protected]
E-mail: [email protected]
Search for more papers by this authorHelena C. Quilter
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorKerry Riley
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorMary F. Mahon
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Search for more papers by this authorCorresponding Author
Matthew D. Jones
Department of Chemistry, University of Bath, BA2 7AY UK Bath
Department of Chemistry, University of Bath, Bath BA2 7AY UK
E-mail: [email protected]
E-mail: [email protected]
Search for more papers by this authorGraphical Abstract
A series of AlIII complexes with salan and salalen ligands were prepared. These were trialled for the controlled ROP of rac-LA. The salan complexes were shown to be significantly more active for the polymerisation.
Abstract
In this paper a series of 7 salalen ligands based on an aminopyrrolidine backbone have been prepared and characterised. Several systems have been reduced to the salan ONNO type-ligand. All ligands have been complexed to AlIII with Al(1–7)Me, Al(2a)(OiPr) and Al(7a)Me being characterised by single-crystal X-ray diffraction. In general the AlIII centres are best described as being in a trigonal bipyramidal geometry. The solution and solid-state structures are discussed. All complexes have all been trialled for the production of PLA from rac-lactide, the salalen complexes had a preference for heterotactic PLA (Pr = 0.71), whereas the salan had a more isotactic bias (Pm = 0.72). In all cases PLA with low dispersities and predictable molecular weights were prepared. The activity of the two classes of ligands is compared with the salan complexes appearing to be significantly more active than the salalen systems.
Supporting Information
Filename | Description |
---|---|
ejic201900417-sup-0001-SupMat.pdf4.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) R. Auras, B. Harte and S. Selke, Macromol. Biosci., 2004, 4, 835–864; b) L. T. Lim, R. Auras and M. Rubino, Prog. Polym. Sci., 2008, 33, 820–852; c) K. M. Nampoothiri, N. R. Nair and R. P. John, Bioresour. Technol., 2010, 101, 8493–8501.
- 2B. D. Ulery, L. S. Nair and C. T. Laurencin, J. Polym. Sci., Part A J. Polym. Sci. Pt. B-Polym. Phys., 2011, 49, 832–864.
- 3a) I. Armentano, M. Dottori, E. Fortunati, S. Mattioli and J. M. Kenny, Polym. Degrad. Stab., 2010, 95, 2126–2146; b) B. Gupta, N. Revagade and J. Hilborn, Prog. Polym. Sci., 2007, 32, 455–482; c) O. Martin and L. Averous, Polymer, 2001, 42, 6209–6219; d) R. M. Rasal, A. V. Janorkar and D. E. Hirt, Prog. Polym. Sci., 2010, 35, 338–356; e) J. W. Rhim, H. M. Park and C. S. Ha, Prog. Polym. Sci., 2013, 38, 1629–1652; f) C. M. Thomas, Chem. Soc. Rev., 2010, 39, 165–173; g) H. Tsuji, Macromol. Biosci., 2005, 5, 569–597; h) E. T. H. Vink, K. R. Rabago, D. A. Glassner and P. R. Gruber, Polym. Degrad. Stab., 2003, 80, 403–419.
- 4a) J. Beament, M. F. Mahon, A. Buchard and M. D. Jones, Organometallics, 2018, 37, 1719–1724;
b) B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2001, 123, 3229–3238;
c) H. Z. Du, X. Pang, H. Y. Yu, X. L. Zhuang, X. S. Chen, D. M. Cui, X. H. Wang and X. B. Jing, Macromolecules, 2007, 40, 1904–1913;
d) S. M. Guillaume, E. Kirillov, Y. Sarazin and J. F. Carpentier, Chem. Eur. J., 2015, 21, 7988–8003;
e) M. Honrado, A. Otero, J. Fernandez-Baeza, L. F. Sanchez-Barba, A. Garces, A. Lara-Sanchez, J. Martinez-Ferrer, S. Sobrino and A. M. Rodriguez, Organometallics, 2015, 34, 3196–3208;
f) P. Hormnirun, E. L. Marshall, V. C. Gibson, R. I. Pugh and A. J. P. White, Proc. Natl. Acad. Sci. USA, 2006, 103, 15343–15348;
g) J. W. Hu, C. Kan and H. Y. Ma, Inorg. Chem., 2018, 57, 11240–11251;
h) J. W. Hu, C. Kan, H. B. Wang and H. Y. Ma, Macromolecules, 2018, 51, 5304–5312;
i) M. D. Jones, L. Brady, P. McKeown, A. Buchard, P. M. Schafer, L. H. Thomas, M. F. Mahon, T. J. Woodman and J. P. Lowe, Chem. Sci., 2015, 6, 5034–5039;
j) M. D. Jones, S. L. Hancock, P. McKeown, P. M. Schafer, A. Buchard, L. H. Thomas, M. F. Mahon and J. P. Lowe, Chem. Commun., 2014, 50, 15967–15970;
k) J. E. Kasperczyk, Macromolecules, 1995, 28, 3937–3939;
l) K. M. Osten and P. Mehrkhodavandi, Acc. Chem. Res., 2017, 50, 2861–2869;
m) X. Pang, R. L. Duan, X. Li, C. Y. Hu, X. H. Wang and X. S. Chen, Macromolecules, 2018, 51, 906–913;
n) A. Pietrangelo, S. C. Knight, A. K. Gupta, L. J. Yao, M. A. Hillmyer and W. B. Tolman, J. Am. Chem. Soc., 2010, 132, 11649–11657;
o) A. Sauer, A. Kapelski, C. Fliedel, S. Dagorne, M. Kol and J. Okuda, Dalton Trans., 2013, 42, 9007–9023;
p) S. Tabthong, T. Nanok, P. Sumrit, P. Kongsaeree, S. Prabpai, P. Chuawong and P. Hormnirun, Macromolecules, 2015, 48, 6846–6861;
q) H. B. Wang, Y. Yang and H. Y. Ma, Macromolecules, 2014, 47, 7750–7764;
r) H. B. Wang, Y. Yang and H. Y. Ma, Inorg. Chem., 2016, 55, 7356–7372;
s) S. Yang, K. Nie, Y. Zhang, M. Q. Xue, Y. M. Yao and Q. Shen, Inorg. Chem., 2014, 53, 105–115;
t) Z. Y. Zhong, P. J. Dijkstra and J. Feijen, Angew. Chem. Int. Ed., 2002, 41, 4510–4513;
10.1002/1521-3773(20021202)41:23<4510::AID-ANIE4510>3.0.CO;2-L CASPubMedWeb of Science®Google ScholarAngew. Chem., 2002, 114, 4692;10.1002/1521-3757(20021202)114:23<4692::AID-ANGE4692>3.0.CO;2-5 Google Scholaru) S. Gesslbauer, H. Cheek, A. J. P. White and C. Romain, Dalton Trans., 2018, 47, 10410–10414.
- 5a) O. J. Driscoll, C. K. C. Leung, M. F. Mahon, P. McKeown and M. D. Jones, Eur. J. Inorg. Chem., 2018, 5129–5135; b) S. L. Hancock, M. F. Mahon and M. D. Jones, Dalton Trans., 2013, 42, 9279–9285; c) S. M. Kirk, G. Kociok-Kohn and M. D. Jones, Organometallics, 2016, 35, 3837–3843; d) P. McKeown, J. Brown-Humes, M. G. Davidson, M. F. Mahon, T. J. Woodman and M. D. Jones, Dalton Trans., 2017, 46, 5048–5057; e) E. L. Whitelaw, M. G. Davidson and M. D. Jones, Chem. Commun., 2011, 47, 10004–10006; f) E. L. Whitelaw, M. D. Jones and M. F. Mahon, Inorg. Chem., 2010, 49, 7176–7181; g) E. L. Whitelaw, G. Loraine, M. F. Mahon and M. D. Jones, Dalton Trans., 2011, 40, 11469–11473; h) S. Dagorne, C. Fliedel, in: Modern Organoaluminum Reagents: Preparation, Structure, Reactivity and Use, Vol. 41 (Eds.: S. Woodward and S. Dagorne), 2013, pp. 125–171,
- 6P. McKeown, M. G. Davidson, G. Kociok-Kohn and M. D. Jones, Chem. Commun., 2016, 52, 10431–10434.
- 7A. Pilone, K. Press, I. Goldberg, M. Kol, M. Mazzeo and M. Lamberti, J. Am. Chem. Soc., 2014, 136, 2940–2943.
- 8A. Stopper, T. Rosen, V. Venditto, I. Goldberg and M. Kol, Chem. Eur. J., 2017, 23, 11540–11548.
- 9A. Pilone, N. De Maio, K. Press, V. Venditto, D. Pappalardo, M. Mazzeo, C. Pellecchia, M. Kol and M. Lamberti, Dalton Trans., 2015, 44, 2157–2165.
- 10K. Nie, W. K. Gu, Y. M. Yao, Y. Zhang and Q. Shen, Organometallics, 2013, 32, 2608–2617.