A Direct One-Pot Synthesis of Asymmetric Dehydrobenzopyrido[12]annulenes and Their Physicochemical Properties
Corresponding Author
Paul N. W. Baxter
UPR 22-CNRS-UdS, Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg, France
Institut Charles Sadron, UPR 22-CNRS-UdS, 23 rue du Loess, 67034 Strasbourg, France
E-mail: [email protected]
Search for more papers by this authorLydia Karmazin
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorAndré DeCian
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorAlexandre Varnek
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorJean-Paul Gisselbrecht
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorJean-Marc Strub
Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques IPHC, UMR 7178 (CNRS-UdS) ECPM, 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorSarah Cianferani
Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques IPHC, UMR 7178 (CNRS-UdS) ECPM, 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorCorresponding Author
Paul N. W. Baxter
UPR 22-CNRS-UdS, Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg, France
Institut Charles Sadron, UPR 22-CNRS-UdS, 23 rue du Loess, 67034 Strasbourg, France
E-mail: [email protected]
Search for more papers by this authorLydia Karmazin
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorAndré DeCian
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorAlexandre Varnek
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorJean-Paul Gisselbrecht
UMR 7177 CNRS-UdS, Institut de Chimie de Strasbourg, 67008 Strasbourg, France
Search for more papers by this authorJean-Marc Strub
Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques IPHC, UMR 7178 (CNRS-UdS) ECPM, 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorSarah Cianferani
Laboratoire de Spectrométrie de Masse Bio-Organique, Département des Sciences Analytiques IPHC, UMR 7178 (CNRS-UdS) ECPM, 25 rue Becquerel, 67087 Strasbourg, France
Search for more papers by this authorGraphical Abstract
Asymmetric dehydroaryl[12]annulenes 2 and 3 were directly prepared by a one-pot Stephens–Castro mixed-coupling from cuprates 8 and 10. Physical and theoretical studies showed 1–4 to have isoelectronic band gaps with electron accepting ability increasing with increasing nitrogen content.
Abstract
A direct one-pot synthesis of asymmetric dehydrobenzopyrido[12]annulenes 2 and 3 containing one or two pyridine rings is reported that employs a Stephens–Castro mediated cross-coupling of mixtures of ethynylcuprate precursors. The spectroscopic and theoretical properties of 2 and 3 are compared to those of the threefold symmetric dehydrotribenzo[12]annulene 1, and dehydrotripyrido[12]annulenes 4 and 5 and dehydrodibenzodipyrido[16]annulene byproduct 6, and showed 1–5 to be essentially isoelectronic band gap materials whose electron accepting ability increases with increasing nitrogen incorporation. The structures of 2, 4 and 6 were also unambiguously characterized by X-ray crystallography. The results highlight the potential dehydroaryl[12]annulenes incorporating pyridines offer for the construction of high carbon content electronic materials.
Supporting Information
Filename | Description |
---|---|
ejoc201700700-sup-0001-SupMat.pdf649.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Named in the literature as tribenzocyclyne and tribenzocyclotriyne (TBC), benzo[12]annulene, dehydrobenzo[12]annulene and trisdehydrotribenzo[12]annulene ([12]DBA), tribenzohexadehydro[12]annulene, hexadehydrotribenzo[12]annulene, hexadehydrotribenzo[a,e,i][12]annulene, 5,6,11,12,17,18-hexadehydrotribenzo[a,e,i]cyclododecene (TBC), 1,2:5,6:9,10-tribenzocyclododeca-1,5,9-triene-3,7,11-triyne and 1,2:5,6:9,10-tribenzo-3,7,11-tridehydro[12]annulene. For the sake of brevity and due to frequent use in the literature, this class of compound is herein referred to as dehydrobenzo[12]annulene or the abbreviation [12]DBA.
- 2J. Jusélius and D. Sundholm, Phys. Chem. Chem. Phys., 2001, 3, 2433–2437.
- 3A. J. Matzger and K. P. C. Vollhardt, Tetrahedron Lett., 1998, 39, 6791–6794.
- 4K. Tahara, T. Yoshimura, M. Sonoda, Y. Tobe and R. V. Williams, J. Org. Chem., 2007, 72, 1437–1442.
- 5N. Narita, S. Nagai and S. Suzuki, Phys. Rev. B 2001, 64, 245408–1–245408–7.
- 6N. Narita, S. Nagai, S. Suzuki and K. Nakao, Phys. Rev. B 2000, 62, 11 146–11 151.
- 7U. H. F. Bunz, Y. Rubin and Y. Tobe, Chem. Soc. Rev., 1999, 28, 107–119.
- 8N. Narita, S. Nagai, S. Suzuki and K. Nakao, Phys. Rev. B 1998, 58, 11 009–11 014.
- 9R. H. Baughman, H. Eckhardt and M. Kertesz, J. Chem. Phys., 1987, 87, 6687–6699.
- 10W. J. Youngs, C. A. Tessier and J. D. Bradshaw, Chem. Rev., 1999, 99, 3153–3180.
- 11J. D. Ferrara, A. A. Tanaka, C. Fierro, C. A. Tessier-Youngs and W. J. Youngs, Organometallics, 1989, 8, 2089–2098.
- 12J. D. Ferrara, C. A. Tessier-Youngs and W. J. Youngs, J. Am. Chem. Soc., 1985, 107, 6719–6721.
- 13K. Tahara, Y. Yamamoto, D. E. Gross, H. Kozuma, Y. Arikuma, K. Ohta, Y. Koizumi, Y. Gao, Y. Shimizu, S. Seki, K. Kamada, J. S. Moore and Y. Tobe, Chem. Eur. J., 2013, 19, 11251–11260.
- 14K. Tahara, T. Yoshimura, M. Ohno, M. Sonoda and Y. Tobe, Chem. Lett., 2007, 36, 838–839.
- 15M. Sonoda, Y. Sakai, T. Yoshimura, Y. Tobe and K. Kamada, Chem. Lett., 2004, 33, 972–973.
- 16C. A. JohnsonII, Y. Lu and M. M. Haley, Org. Lett., 2007, 9, 3725–3728.
- 17T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe and R. V. Williams, Org. Lett., 2006, 8, 2933–2936.
- 18M. Iyoda, S. Sirinintasak, Y. Nishiyama, A. Vorasingha, F. Sultana, K. Nakao, Y. Kuwatani, H. Matsuyama, M. Yoshida and Y. Miyake, Synthesis, 2004, 1527–1531.
- 19M. M. Haley, Pure Appl. Chem., 2008, 80, 519–532.
- 20O. Š. Miljanić, K. P. C. Vollhardt and G. D. Whitener, Synlett, 2003, 29–34.
- 21J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen and M. M. Haley, Org. Lett., 2000, 2, 969–972.
- 22K. Tahara, K. Kaneko, K. Katayama, S. Itano, C. H. Nguyen, D. D. D. Amorim, S. De Feyter and Y. Tobe, Langmuir, 2015, 31, 7032–7040.
- 23K. Tahara, J. Adisoejoso, K. Inukai, S. Lei, A. Noguchi, B. Li, W. Vanderlinden, S. De Feyter and Y. Tobe, Chem. Commun., 2014, 50, 2831–2833.
- 24J.-H. Kim, K. Tahara, J. Jung, S. De Feyter, Y. Tobe, Y. Kim and M. Kawai, J. Phys. Chem. C, 2012, 116, 17082–17088.
- 25K. Tahara, E. Ghijsens, M. Matsushita, P. Szabelski, S. De Feyter and Y. Tobe, Chem. Commun., 2011, 47, 11459–11461.
- 26K. Tahara, S. Lei, J. Adisoejoso, S. De Feyter and Y. Tobe, Chem. Commun., 2010, 46, 8507–8525 and references cited therein.
- 27K. Tahara, K. Katayama, M. O. Blunt, K. Iritani, S. De Feyter and Y. Tobe, ACS Nano, 2014, 8, 8683–8694.
- 28J. Adisoejoso, K. Tahara, S. Lei, P. Szabelski, W. Rzysko, K. Inukai, M. O. Blunt, Y. Tobe and S. De Feyter, ACS Nano, 2012, 6, 897–903.
- 29K. Tahara, S. Lei, D. Mössinger, H. Kozuma, K. Inukai, M. Van der Auweraer, F. C. De Schryver, S. Höger, Y. Tobe and S. De Feyter, Chem. Commun., 2008, 3897–3899.
- 30K. Tahara, H. Yamaga, E. Ghijsens, K. Inukai, J. Adisoejoso, M. O. Blunt, S. De Feyter and Y. Tobe, Nat. Chem., 2011, 3, 714–719.
- 31K. Tahara, K. Inukai, J. Adisoejoso, H. Yamaga, T. Balandina, M. O. Blunt, S. De Feyter and Y. Tobe, Angew. Chem. Int. Ed., 2013, 52, 8373–8376;
Angew. Chem., 2013, 125, 8531–8534.
10.1002/ange.201303745 Google Scholar
- 32K. Schouteden, T. Ivanova, Z. Li, V. Iancu, K. Tahara, Y. Tobe, J. Adisoejoso, S. De Feyter, C. Van Haesendonck and E. Janssens, Chem. Commun., 2015, 51, 10917–10920.
- 33I. Hisaki, E. Kometani, H. Shigemitsu, N. Tohnai and M. Miyata, Synlett, 2015, 26, 1601–1605.
- 34I. Hisaki, Y. Sakamoto, H. Shigemitsu, N. Tohnai, M. Miyata, S. Seki, A. Saeki and S. Tagawa, Chem. Eur. J., 2008, 14, 4178–4187.
- 35L. A. Baldwin, J. W. Crowe, M. D. Shannon, C. P. Jaroniec and P. L. McGrier, Chem. Mater., 2015, 27, 6169–6172.
- 36H. Yang, Y. Du, S. Wan, G. D. Trahan, Y. Jin and W. Zhang, Chem. Sci., 2015, 6, 4049–4053.
- 37I. D. Campbell, G. Eglinton, W. Henderson and R. A. Raphael, Chem. Commun., 1966, 4, 87–89.
- 38D. Zhang, C. A. Tessier and W. J. Youngs, Chem. Mater., 1999, 11, 3050–3057.
- 39D. Solooki, J. D. Ferrara, D. Malaba, J. D. Bradshaw, C. A. Tessier and W. J. Youngs, Inorg. Synth., 1997, 31, 122–128.
- 40J. D. Kinder, C. A. Tessier and W. J. Youngs, Synlett, 1993, 149–150.
- 41I. Hisaki, H. Senga, H. Shigemitsu, N. Tohnai and M. Miyata, Chem. Eur. J., 2011, 17, 14348–14353.
- 42K. Tahara, T. Fujita, M. Sonoda, M. Shiro and Y. Tobe, J. Am. Chem. Soc., 2008, 130, 14339–14345.
- 43K. Tahara, S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, W. Mamdouh, M. Sonoda, F. C. De Schryver, S. De Feyter and Y. Tobe, J. Am. Chem. Soc., 2006, 128, 16613–16625.
- 44S. Takahashi, Y. Kuroyama, K. Sonogashira and N. Hagihara, Synthesis, 1980, 627–630.
- 45K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975, 16, 4467–4470.
- 46H. A. Staab and R. Bader, Chem. Ber., 1970, 103, 1157–1167.
- 47H. Shigemitsu, I. Hisaki, E. Kometani, D. Yasumiya, Y. Sakamoto, K. Osaka, T. S. Thakur, Akinori Saeki, S. Seki, F. Kimura, T. Kimura, N. Tohnai and M. Miyata, Chem. Eur. J., 2013, 19, 15366–15377.
- 48M. Dudič, I. Císařová and J. Michl, J. Org. Chem., 2012, 77, 68–74.
- 49H. A. Staab and F. Graf, Tetrahedron Lett., 1966, 7, 751–757.
- 50H. A. Staab and F. Graf, Chem. Ber., 1970, 103, 1107–1118.
- 51S. H. Seo, T. V. Jones, H. Seyler, J. O. Peters, T. H. Kim, J. Y. Chang and G. N. Tew, J. Am. Chem. Soc., 2006, 128, 9264–9265.
- 52P. N. W. Baxter and R. D.-Youcef, J. Org. Chem., 2005, 70, 4935–4953.
- 53It was more convenient to generate the tBuOCu in situ due to its air and water sensitivity.
- 54S. S. Y. Chui, M. F. Y. Ng and C.-M. Che, Chem. Eur. J., 2005, 11, 1739–1749 and references cited therein.
- 55A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 56C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789.
- 57The DFT calculated band gaps for 1–4 were consistently 0.33–0.41 eV higher in energy than the experimentally determined solution optical band gaps derived from the lowest energy absorption edges from 360–450 nm shown in the magnified spectrum of Figure 1. However, the calculated band gaps corresponded more closely with the second lowest energy absorption edges at 350 nm seen in the upper left part of the magnified spectrum of Figure 1.
- 58D. Malaba, A. Djebli, L. Chen, E. A. Zarate, C. A. Tessier and W. J. Youngs, Organometallics, 1993, 12, 1266–1276.
- 59A. Al Ouahabi, P. N. W. Baxter, J.-P. Gisselbrecht, A. De Cian, L. Brelot and N. Kyritsakas-Gruber, J. Org. Chem., 2009, 74, 4675–4689.
- 60H. Irngartinger, L. Leiserowitz and G. M. J. Schmidt, Chem. Ber., 1970, 103, 1119–1131.
- 61The influence of solvent on the crystallization of dehydrotribenzoro[12]annulenes is exemplified in a recent report, describing the preferential direction of the hydrogens of included CHCl3 into the cavity of the macrocycle, even when pyridine substituents are present; I. Hisaki, H. Senga, Y. Sakamoto, S. Tsuzuki, N. Tohnai and M. Miyata, Chem. Eur. J., 2009, 15, 13336–13340.
- 62i.e. P21/c; See: D. Solooki, J. D. Bradshaw, C. A. Tessier, W. J. Youngs, R. F. See, M. Churchill and J. D. Ferrara, J. Organomet. Chem., 1994, 470, 231–236.
- 63B. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith and A. R. Tatchell, in: Revised Vogel's Textbook of Organic Chemistry (Including Qualitative Organic Analysis), 4th ed.; Longman, London and New York, 1978, pp. 199–200.