Synthesis of Porphyrinoids, BODIPYs, and (Dipyrrinato)ruthenium(II) Complexes from Prefunctionalized Dipyrromethanes
Benjamin F. Hohlfeld
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
Search for more papers by this authorKeith J. Flanagan
Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, 8 Dublin, Ireland
Search for more papers by this authorNora Kulak
Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
Search for more papers by this authorMathias O. Senge
Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, 8 Dublin, Ireland
Search for more papers by this authorMathias Christmann
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Arno Wiehe
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Search for more papers by this authorBenjamin F. Hohlfeld
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
Search for more papers by this authorKeith J. Flanagan
Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, 8 Dublin, Ireland
Search for more papers by this authorNora Kulak
Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
Search for more papers by this authorMathias O. Senge
Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, 8 Dublin, Ireland
Search for more papers by this authorMathias Christmann
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Arno Wiehe
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
Search for more papers by this authorGraphical Abstract
The 3,4,5-trifluorophenyl and the 4-fluoro-3-nitrophenyl substituent were evaluated for modifying porphyrins, corroles, BODIPYs, and their dipyrromethane precursors via SNAr. Specifically, 5-(4-fluoro-3-nitrophenyl)dipyrromethane was efficiently substituted with amines. The prefunctionalized dipyrromethanes served as precursors for meso-substituted BODIPYs, dipyrrins, and their related RuII complexes.
Abstract
The introduction of functional groups into the meso-position of dipyrromethanes, boron-dipyrromethenes (BODIPYs) and porphyrinoids, is of fundamental importance in designing such dye systems for material sciences or photomedicine. One route that has proven to be particularly useful in this respect is the nucleophilic aromatic substitution (SNAr) on porphyrinoids and their precursors carrying electron-withdrawing substituents. To further expand this methodology, the potential of the 4-fluoro-3-nitrophenyl and the 3,4,5-trifluorophenyl moieties for the synthesis of functionalized dipyrromethanes, BODIPYs, and porphyrinoids has been evaluated. The 3,4,5-trifluorophenyl moiety proved not to be applicable in the SNAr with nucleophiles. The introduction of the 4-fluoro-3-nitrophenyl group, however, allowed fast and efficient SNAr with various amine nucleophiles. The synthesized 4-amino-3-nitrophenyl-substituted dipyrromethanes were successfully applied in the synthesis BODIPYs and were tested in the synthesis of “trans”-A2B2 porphyrins and A2B corroles. Furthermore, the dipyrromethanes – after oxidation to the dipyrromethenes – were found to be suitable ligands for metal ions giving access to functionalized ruthenium(II) metal complexes.
Supporting Information
Filename | Description |
---|---|
ejoc201900530-sup-0001-SupMat.pdf9.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) W. Auwärter, D. Écija, F. Klappenberger and J. V. Barth, Nat. Chem., 2015, 7, 105–120;
- 2M. O. Senge, Chem. Commun., 2006, 243–256.
- 3a) J. F. B. Barata, M. G. P. M. S. Neves, M. A. F. Faustino, A. C. Tomé and J. A. S. Cavaleiro, Chem. Rev., 2017, 117, 3192–3253;
- 4a) M. Roucan, K. J. Flanagan, J. O'Brien and M. O. Senge, Eur. J. Org. Chem., 2018, 6432–6446;
- 5a) M. O. Senge, I. Bischoff, N. Y. Nelson and K. M. Smith, J. Porphyrins Phthalocyanines, 1999, 3, 99–116;
- 6a) L. Smykalla, C. Mende, M. Fronk, P. F. Siles, M. Hietschold, G. Salvan, D. R. T. Zahn, O. G. Schmidt, T. Rüffer and H. Lang, Beilstein J. Nanotechnol., 2017, 8, 1786–1800;
- 7a) K. Rybicka-Jasińska, W. Shan, K. Zawada, K. M. Kadish and D. Gryko, J. Am. Chem. Soc., 2016, 138, 15451–15458;
- 8a) M. Kielmann, C. Prior and M. O. Senge, New J. Chem., 2018, 42, 7529–7550;
- 9I. Aviv and Z. Gross, Chem. Commun., 2007, 1987–1999.
- 10P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, CA Cancer J. Clin., 2011, 61, 250–281.
- 11a) C. Lange and P. J. Bednarski, Curr. Pharm. Des., 2016, 22, 6956–6974;
- 12A. P. Castano, T. N. Demidova and M. R. Hamblin, Photodiagn. Photodyn. Ther., 2004, 1, 279–293.
- 13N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130–1172.
- 14A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung and K. Burgess, Chem. Soc. Rev., 2013, 42, 77–88.
- 15Y. Ni and J. Wu, Org. Biomol. Chem., 2014, 12, 3774–3791.
- 16M. J. Ortiz, A. R. Agarrabeitia, G. Duran-Sampedro, J. B. Prieto, T. A. Lopez, W. A. Massad, H. A. Montejano, N. A. García and I. L. Arbeloa, Tetrahedron, 2012, 68, 1153–1162.
- 17E. Fron, E. Coutiño-Gonzalez, L. Pandey, M. Sliwa, M. Van der Auweraer, F. C. De Schryver, J. Thomas, Z. Dong, V. Leen, M. Smet, W. Dehaen and T. Vosch, New J. Chem., 2009, 33, 1490–1496.
- 18X.-F. Zhang and X. Yang, J. Phys. Chem. B, 2013, 117, 5533–5539.
- 19M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K. J. Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle and M. O. Senge, J. Am. Chem. Soc., 2017, 139, 6282–6285.
- 20S. C. C. Nunes, S. M. M. Lopes, C. S. B. Gomes, A. Lemos, A. A. C. C. Pais and T. M. V. D. Pinho e Melo, J. Org. Chem., 2014, 79, 10456–10465.
- 21a) B. Basumatary, A. R. Sekhar, R. V. R. Reddy and J. Sankar, Inorg. Chem., 2015, 54, 4257–4267;
- 22D. T. Gryko, D. Gryko and C.-H. Lee, Chem. Soc. Rev., 2012, 41, 3780–3789.
- 23A. Treibs and F.-H. Kreuzer, Justus Liebigs Ann. Chem., 1968, 718, 208–223.
- 24G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem. Int. Ed., 2008, 47, 1184–1201;
- 25G. R. GeierIII and J. S. Lindsey, Tetrahedron, 2004, 60, 11435–11444.
- 26M. O. Senge, Acc. Chem. Res., 2005, 38, 733–743.
- 27B. J. Littler, M. A. Miller, C.-H. Hung, R. W. Wagner, D. F. O'Shea, P. D. Boyle and J. S. Lindsey, J. Org. Chem., 1999, 64, 1391–1396.
- 28H. R. A. Golf, H.-U. Reissig and A. Wiehe, Org. Lett., 2015, 17, 982–985.
- 29a) A. C. B. Figueira, K. T. de Oliveira and O. A. Serra, Dyes Pigm., 2011, 91, 383–388;
- 30M. H. Beyzavi, D. Lentz, H.-U. Reissig and A. Wiehe, Chem. Eur. J., 2013, 19, 6203–6208.
- 31S. J. Shaw, K. J. Elgie, C. Edwards and R. W. Boyle, Tetrahedron Lett., 1999, 40, 1595–1596.
- 32a) H. R. A. Golf, H.-U. Reissig and A. Wiehe, Eur. J. Org. Chem., 2015, 1548–1568;
- 33Y. Volkova, B. Brizet, P. D. Harvey, F. Denat and C. Goze, Eur. J. Org. Chem., 2014, 2268–2274.
- 34B. Chandrakantha, A. M. Isloor, P. Shetty, H. K. Fun and G. Hegde, Eur. J. Med. Chem., 2014, 71, 316–323.
- 35Kvíčala, M. Beneš, O. Paleta and V. Král, J. Fluorine Chem., 2010, 131, 1327–1337.
- 36P. Politzer, L. Abrahmsen and P. Sjoberg, J. Am. Chem. Soc., 1984, 106, 855–860.
- 37O. Exner and T. M. Krygowski, Chem. Soc. Rev., 1996, 25, 71–75.
- 38M. Pagliaro and R. Ciriminna, J. Mater. Chem., 2005, 15, 4981–4991.
- 39C.-H. Lee and J. S. Lindsey, Tetrahedron, 1994, 50, 11427–11440.
- 40B. Koszarna and D. T. Gryko, J. Org. Chem., 2006, 71, 3707–3717.
- 41R. W. Wagner and J. S. Lindsey, Pure Appl. Chem., 1996, 68, 1373–1380.
- 42a) M. Chaouchi, A. Loupy, S. Marque and A. Petit, Eur. J. Org. Chem., 2002, 1278–1283;
- 43M. M. Catalano, M. J. Crossley, M. M. Harding and L. G. King, J. Chem. Soc., Chem. Commun., 1984, 1535–1536.
- 44D. Aicher, A. Wiehe and C. B. W. Stark, Synlett, 2010, 395–398.
- 45C. H. Bedel-Cloutour, L. Mauclaire, A. Saux and M. Pereyre, Bioconjugate Chem., 1996, 7, 617–627.
- 46C. S. Gutsche, B. F. Hohlfeld, K. J. Flanagan, M. O. Senge, N. Kulak and A. Wiehe, Eur. J. Org. Chem., 2017, 3187–3196.
- 47T. Hori and A. Osuka, Eur. J. Org. Chem., 2010, 2379–2386.
- 48M. Schmidlehner, F. Faschinger, L. M. Reith, M. Ertl and W. Schoefberger, Appl. Organomet. Chem., 2013, 27, 395–405.
- 49A. J. J. Lennox, Angew. Chem. Int. Ed., 2018, 57, 14686–14688;
- 50M. R. Crampton, Adv. Phys. Org. Chem., 1969, 7, 211–257.
- 51F. Terrier, Chem. Rev., 1982, 82, 77–152.
- 52B. Schulze and U. S. Schubert, Chem. Soc. Rev., 2014, 43, 2522–2571.
- 53C. S. Gutsche, M. Ortwerth, S. Gräfe, K. J. Flanagan, M. O. Senge, H.-U. Reissig, N. Kulak and A. Wiehe, Chem. Eur. J., 2016, 22, 13953–13964.
- 54J. Králová, T. Bříza, I. Moserová, B. Dolenský, P. Vašek, P. Poučková, Z. Kejík, R. Kaplánek, P. Martásek, M. Dvořák and V. Král, J. Med. Chem., 2008, 51, 5964–5973.
- 55M. Suzuki, S. Shimizu, J.-Y. Shin and A. Osuka, Tetrahedron Lett., 2003, 44, 4597–4601.
- 56V. Arca, C. Paradisi and G. Scorrano, J. Org. Chem., 1990, 55, 3617–3621.
- 57P. E. Gagnon, K. F. Keirstead and B. T. Newbold, Can. J. Chem., 1957, 35, 1304–1318.
- 58M. H. Beyzavi, C. Nietzold, H.-U. Reissig and A. Wiehe, Adv. Synth. Catal., 2013, 355, 1409–1422.
- 59G. R. GeierIII, B. J. Littler and J. S. Lindsey, J. Chem. Soc., Perkin Trans. 2, 2001, 701–711.
- 60J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Marguerettaz, J. Org. Chem., 1987, 52, 827–836.
- 61B. J. Littler, Y. Ciringh and J. S. Lindsey, J. Org. Chem., 1999, 64, 2864–2872.
- 62M. K. Kiesewetter, M. D. Scholten, N. Kirn, R. L. Weber, J. L. Hedrick and R. M. Waymouth, J. Org. Chem., 2009, 74, 9490–9496.
- 63S. Naik, G. Bhattacharjya, B. Talukdar and B. K. Patel, Eur. J. Org. Chem., 2004, 1254–1260.
- 64M. H. Staegemann, S. Gräfe, R. Haag and A. Wiehe, Org. Biomol. Chem., 2016, 14, 9114–9132.
- 65A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932.
- 66W. Hu, X.-F. Zhang, X. Lu, S. Lan, D. Tian, T. Li, L. Wang, S. Zhao, M. Feng and J. Zhang, Dyes Pigm. 2018, 149, 306-314.
- 67S. Telitel, N. Blanchard, S. Schweizer, F. Morlet-Savary, B. Graff, J.-P. Fouassier and J. Lalevée, Polymer, 2013, 54, 2071–2076.
- 68a) J. Wang, Q. Wu, Q. Gong, K. Cheng, Q. Liu, C. Yu, E. Hao and J. Jiao, Adv. Synth. Catal., 2019, 361, 769–777;
- 69V. Lakshmi, M. R. Rao and M. Ravikanth, Org. Biomol. Chem., 2015, 13, 2501–2517.
- 70a) C. F. A. Gómez-Durán, I. Esnal, I. Valois-Escamilla, A. Urías-Benavides, J. Bañuelos, I. L. Arbeloa, I. García-Moreno and E. Peña-Cabrera, Chem. Eur. J., 2016, 22, 1048–1061;
- 71F. Lv, B. Tang, E. Hao, Q. Liu, H. Wang and L. Jiao, Chem. Commun., 2019, 55, 1639–1642.
- 72V. Leen, T. Leemans, N. Boens and W. Dehaen, Eur. J. Org. Chem., 2011, 4386–4396.
- 73V. Leen, V. Z. Gonzalvo, W. M. Deborggraeve, N. Boens and W. Dehaen, Chem. Commun., 2010, 46, 4908–4910.
- 74R. P. Paitandi, R. K. Gupta, R. S. Singh, G. Sharma, B. Koch and D. S. Pandey, Eur. J. Med. Chem., 2014, 84, 17–19.
- 75S. J. Smalley, M. R. Waterland and S. G. Telfer, Inorg. Chem., 2009, 48, 13–15.
- 76R. K. Gupta, A. Kumar, R. P. Paitandi, R. S. Singh, S. Mukhopadhyay, S. P. Verma, P. Dasb and D. S. Pandey, Dalton Trans., 2016, 45, 7163–7177.
- 77G. Li, I. Ray, E. N. Glass, K. Kovnir, A. Khoroshutin, S. I. Gorelsky and M. Shatruk, Inorg. Chem., 2012, 51, 1614–1624.
- 78a) H. Hope, Prog. Inorg. Chem., 2007, 55, 1–19;
- 79 Saint, Version 8.37a ed., Bruker AXS, Inc., Madison, WI, 2013.
- 80 SADABS, version 2016/2 ed., Bruker AXS, Inc, Madison, WI, 2014.
- 81 APEX3, Version 2016.9–0 ed., Bruker AXS, Inc., Madison, WI, 2016.
- 82O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
- 83G. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3–8.